
P
R

O
F

E
S

S
I

O
N

A
L

M

I
N

D
W

A
R

E
TM

Your Complete Guide to COM+ Services in the .NET Framework

Whether you want to integrate existing COM+ services into the .NET Framework or

create all-new .NET COM+ services using C#, this unique guide shows you the way.

With lucid explanations and a generous helping of sample components and source

code, COM+ expert Derek Beyer shows you step by step how to consume COM

components from .NET, consume .NET components from COM, and create .NETCOM+

components for transactions, security, events, object pooling, queuing, and remoting.

Your Road Map to COM+ and .NET Integration

• Understand the .NET Framework and Common Language Runtime

• Convert COM type libraries into .NET namespaces

• Transform .NET assemblies into COM type libraries

• Harness JIT activation, synchronization, and AutoComplete in a transaction
component

• Create a role-based security component

• Write a loosely coupled events component and create subscriptions with
COM+ Explorer

• Learn the ins and outs of object pooling, from attributes to scalability

• Get the scoop on MSMQ, exceptions, error handling, and other queuing issues

• Use SOAP, channels, formatters, proxies, and other tools to create remoting
serviced components

C# COM+
Programming

$39.99 US
$59.99 CN
£29.99 UK incl. VAT

C# CO
M

+ Program
m

ing

Beyer

Reader Level
Intermediate to Advanced

Shelving Category
Programming

CD-ROM includes all
examples and source code Visit us at mandtbooks.com

CD-ROM
included

P
R

O
F

E
S

S
I

O
N

A
L

M

I
N

D
W

A
R

E
TM

Complete examples for
developing COM+ components
in C# including:
• Queued component
• Remote component
• Pooled component
• Event-driven component
• Role-based security component,

and
• C# transactional component and

client application

System Requirements:
PC running Windows. See the
“What’s on the CD-ROM” Appendix
for further requirements and details.

SOURCE CODE ON
CD-ROM

C# COM+
Programming
Derek Beyer

“It took technical grace to forge a waltz between today’s COM+
Services and tomorrow’s evolved world of Next Generation
development in C#, and this book is your dancing instructor.”
— Michael Lane Thomas, .NET Series Editor

Derek Beyer, MCP+I, specializes
in programming distributed
applications using Visual Basic, C++,
and, most recently, C# and .NET.
Currently the enterprise architect for
a large Midwestern retailer in the
U.S., he has worked on a wide variety
of projects, including a top-ten B2C
Web site, an ERP Web integration,
and a distributed application that
integrates legacy systems.

,!7IA7G4-feidfc!:p;N;t;T;t
ISBN 0-7645-4835-2

*85555-AIGCDe
w w w . m a n d t b o o k s . c o m

4835-2 Cover 8/23/01 2:52 PM Page 1

C# COM+ Programming

014835-2 FM.F 8/31/01 8:09 AM Page i

014835-2 FM.F 8/31/01 8:09 AM Page ii

C# COM+
Programming

Derek Beyer

M&T Books
An imprint of Hungry Minds, Inc.

Best-Selling Books � Digital Downloads � e-Books � Answer Networks �

e-Newsletters � Branded Web Sites � e-Learning

New York, NY � Cleveland, OH � Indianapolis, IN

014835-2 FM.F 8/31/01 8:09 AM Page iii

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS
CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR
WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL
BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: Professional Mindware is a trademark or registered trademark of Hungry Minds, Inc. All other
trademarks are property of their respective owners. Hungry Minds, Inc., is not associated with any product or vendor
mentioned in this book.

is a trademark of
Hungry Minds, Inc.

C# COM+ Programming
Published by
M&T Books
an imprint of Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be
reproduced or transmitted in any form, by any
means (electronic, photocopying, recording, or
otherwise) without the prior written permission of
the publisher.
Library of Congress Control Number: 2001089342
ISBN: 0-7645-4835-2
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/SR/QZ/QR/IN
Distributed in the United States by
Hungry Minds, Inc.
Distributed by CDG Books Canada Inc. for
Canada; by Transworld Publishers Limited in the
United Kingdom; by IDG Norge Books for
Norway; by IDG Sweden Books for Sweden; by
IDG Books Australia Publishing Corporation Pty.
Ltd. for Australia and New Zealand; by
TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong;
by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South
Africa; by Eyrolles for France; by International
Thomson Publishing for Germany, Austria, and
Switzerland; by Distribuidora Cuspide for
Argentina; by LR International for Brazil; by
Galileo Libros for Chile; by Ediciones ZETA S.C.R.
Ltda. for Peru; by WS Computer Publishing

Corporation, Inc., for the Philippines; by
Contemporanea de Ediciones for Venezuela; by
Express Computer Distributors for the Caribbean
and West Indies; by Micronesia Media Distributor,
Inc. for Micronesia; by Chips Computadoras S.A.
de C.V. for Mexico; by Editorial Norma de
Panama S.A. for Panama; by American Bookshops
for Finland.
For general information on Hungry Minds’
products and services please contact our Customer
Care department within the U.S. at 800-762-2974,
outside the U.S. at 317-572-3993 or fax
317-572-4002.
For sales inquiries and reseller information,
including discounts, premium and bulk quantity
sales, and foreign-language translations, please
contact our Customer Care department at
800-434-3422, fax 317-572-4002 or write to
Hungry Minds, Inc., Attn: Customer Care
Department, 10475 Crosspoint Boulevard,
Indianapolis, IN 46256.
For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer
Care department at 212-884-5000.
For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our
Educational Sales department at 800-434-2086 or
fax 317-572-4005.
For press review copies, author interviews, or
other publicity information, please contact our
Public Relations department at 317-572-3168 or
fax 317-572-4168.
For authorization to photocopy items for
corporate, personal, or educational use, please
contact Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, or fax
978-750-4470.

is a trademark of
Hungry Minds, Inc.

014835-2 FM.F 8/31/01 8:09 AM Page iv

About the Author
Derek Beyer is currently working as a Web development specialist at Meijer Stores
in Grand Rapids, Michigan. Derek mentors other developers on application design
issues and development techniques. He is also responsible for implementing and
maintaining core infrastructure components such as Web and application servers.
Derek has developed and evangelized development guidelines for corporate devel-
opers in the areas of MTS, COM+, Visual Basic, and Active Server Pages.

Derek has also worked as a consultant for the Chicago-based consulting company
March First. He has been involved with projects ranging from developing applica-
tions for a major Internet-based consumer Web site to Web integration of SAP R/3
applications. Derek also speaks at user group meetings on the topic of COM+
and .NET.

In his free time, Derek can usually be found getting some much-needed exercise
at the gym or enjoying outdoor activities such as hunting and fishing.

About the Series Editor
Michael Lane Thomas is an active development com-
munity and computer industry analyst who presently
spends a great deal of time spreading the gospel of
Microsoft .NET in his current role as a .NET technol-
ogy evangelist for Microsoft. In working with over a
half-dozen publishing companies, Michael has written
numerous technical articles and written or contributed
to almost 20 books on numerous technical topics,
including Visual Basic, Visual C++, and .NET tech-
nologies. He is a prolific supporter of the Microsoft
certification programs, having earned his MCSD,
MCSE+I, MCT, MCP+SB, and MCDBA.

In addition to technical writing, Michael can also be heard over the airwaves from
time to time, including two weekly radio programs on Entercom (http://
www.entercom.com/) stations, including most often in Kansas City on News Radio
980KMBZ (http://www.kmbz.com/). He can also occasionally be caught on the
Internet doing an MSDN Webcast (http://www.microsoft.com/usa/
webcasts/) discussing .NET, the next generation of Web application technologies.

Michael started his journey through the technical ranks back in college at the
University of Kansas, where he earned his stripes and a couple of degrees. After a
brief stint as a technical and business consultant to Tokyo-based Global Online
Japan, he returned to the States to climb the corporate ladder. He has held assorted
roles, including those of IT manager, field engineer, trainer, independent consul-
tant, and even a brief stint as Interim CTO of a successful dot-com, although he
believes his current role as .NET evangelist for Microsoft is the best of the lot. He
can be reached via email at mlthomas@microsoft.com.

014835-2 FM.F 8/31/01 8:09 AM Page v

Credits

ACQUISITIONS EDITOR
Sharon Cox

PROJECT EDITOR
Matthew E. Lusher

TECHNICAL EDITOR
Nick McCollum

COPY EDITOR
C. M. Jones

EDITORIAL MANAGER
Colleen Totz

PROJECT COORDINATOR
Dale White

GRAPHICS AND PRODUCTION
SPECIALISTS

Laurie Stevens
Brian Torwelle
Erin Zeltner

QUALITY CONTROL TECHNICIANS
Carl Pierce
Charles Spencer

PERMISSIONS EDITOR
Carmen Krikorian

MEDIA DEVELOPMENT SPECIALIST
Gregory W. Stephens

MEDIA DEVELOPMENT COORDINATOR
Marisa Pearman

BOOK DESIGNER
Jim Donohue

PROOFREADING AND INDEXING
TECHBOOKS Production Services

COVER IMAGE
© Noma/Images.com

014835-2 FM.F 8/31/01 8:09 AM Page vi

For
Mom and Dad,

without whom none of this would have been possible for so many reasons

014835-2 FM.F 8/31/01 8:09 AM Page vii

014835-2 FM.F 8/31/01 8:09 AM Page viii

Preface
Welcome to C# COM+ Programming. If you have purchased this book or are currently
contemplating this purchase, you may have a number of questions you are hoping
this book will answer. The most common questions I get are “Is COM+ dead?” and
“What is COM+’s role in .NET applications?” The answer to the first question is a
definite “no”! The COM+ technology that Microsoft has included with Windows 2000
is still available to .NET programmers. In fact, some COM+ technologies that were
previously available only to C++ programmers can now be used by Visual Basic .NET
and C# programmers. The second question is always a little harder to answer. The
typical response you would get from me is “it depends.” The technologies found in
COM+ such as distributed transactions and queued components can be found only in
COM+. The question to ask yourself when trying to decide if you should use a partic-
ular COM+ service is “Do I need this service in my application?” If the answer is yes,
then feel free to use COM+. If the answer is no, then COM+ is not a good fit for your
application.

All of the code examples used in the book use the new programming language
C#. C# is an object-oriented programming language developed specifically for
.NET. In fact, .NET applications are the only applications you can write with C#.
Throughout the book I point out the language features of C# that can help you
write better COM+ components. Although all of the code is in C#, the examples can
also be rewritten in C++ if you like.

Whom This Book Is For
COM+ is not a topic for novice programmers. If you have never developed an appli-
cation before, then this book probably is not for you. When talking about COM+, the
conversation invariably goes toward distributed computing. If you have developed
applications, particularly distributed Web applications, then the topics covered in this
book will make much more sense to you.

If you are new to .NET programming or COM+ programming, do not fear. Part I
of this book covers the basics of .NET and interacting with COM components. Part I
provides you with the grounding you will need to understand how .NET applications
work and how they interact with legacy COM components. If you are new to .NET
programming, I strongly suggest you read Chapter 1 before reading any of the other
chapters. Chapter 1 introduces you to the .NET environment. If you don’t understand
how the environment works, the rest of the book will not make much sense to you.

For those of you new to C#, Appendix C provides you with an introduction to
the language. Appendix C covers the basic features of the language such as data
types, loops, and flow control statements as well as the specific language features
used in the rest of the book. ix

014835-2 FM.F 8/31/01 8:09 AM Page ix

This book assumes that you are not familiar with COM+ programming. Each
chapter covers the basics features and issues about each COM+ service. You do not
have to be an experienced COM+ developer to learn how to develop COM+ compo-
nents with this book.

How This Book Is Organized
This book is divided into three parts. Each part provides information that you will
need to understand the following part. The parts of this book provide a logical pro-
gression that you will need in order to build your skills and understanding of COM+
programming in .NET.

Part I: Interoperating with COM
Part I covers the basics of the .NET runtime environment called the Common
Language Runtime. Because every .NET application runs in the Common Language
Runtime, it is crucial that you understand this environment if you are to develop
COM+ components with C#. The bulk of Part I covers interoperating with the COM
world. I show you how to consume legacy COM components from C# applications.
I also show you how to write C# components that COM clients can consume. An
understanding of COM interoperation with .NET is important if you develop dis-
tributed applications that use COM components or are used from COM components.

Part II: COM+ Core Services
Part II covers the core services of COM+. All of the typical services such as distributed
transactions, role-based security, loosely coupled events, and queued components,
among others, are covered in Part II. The chapters in this part are organized (as best
as possible) from the more easy services to more advance services.

Part III: Advanced COM+ Computing
The final part of this book, Part III, covers some of the more advanced topics of
COM+. Part III covers the .NET remoting framework. The .NET remoting framework
provides a developer with a way to call methods of a component from across the
network. As you will see, COM+ components written with C# can plug into
the remoting framework by virtue of their class hierarchy. Part III also discusses the
new features of COM+, Internet Information Server and Microsoft Message Queue
(all of these technologies are used in the book) currently slated for Windows XP.
Many of the new features of COM+ center on providing a more stable environment
for COM+ components.

x Preface

014835-2 FM.F 8/31/01 8:09 AM Page x

Conventions Used in This Book
Every book uses some several conventions to help the reader understand the material
better. This book is no exception. In this book I used typographical and coding con-
ventions to help make the material more clear.

Typographical Conventions
Because this is a programming book, I have included lots of code examples. I cover
each code example (the larger ones have their own listing numbers) almost line for
line. Paragraphs that explain a particular code example often refer to the code from
the example. When I refer to code from the example, it is always in monospaced
font. Here is an example from Chapter 5.

using System;
using Microsoft.ComServices;
[assembly: ApplicationAccessControl(

AccessChecksLevel = AccessChecksLevelOption.ApplicationComponent
)

]
public class SecuredComponent {

// some method implementations
}

Notice that I use the assembly keyword inside the attribute tags. This tells the C#
compiler that the attribute is an assembly-level attribute. Inside the attribute decla-
ration, I have set the AccessChecksLevel property to application and component
by using the AccessChecksLevelOption enumeration.

The code example above (the line starting with using System;) is set entirely in
monospaced font. The paragraph above explains the code example. In this paragraph
I refer to keywords from the code example such as assembly, AccessChecksLevel,
and AccessChecksLevelOption. Wherever you see something in monospaced font
inside a paragraph, there is a good chance that it is a keyword that was used in a
previous or forthcoming code example.

Coding Conventions
The .NET framework uses Pascal casing to name most of its classes, method para-
meters, enumerations, and so on. The code examples used in this book follow this
practice. Pascal casing capitalizes the first letter of each word in a name. For exam-
ple, if I wrote a class that accessed customer order information, I might name it
CustomerOrders. Because I use Pascal casing, I must capitalize the C of Customer
and the O of Orders. I use this convention to help make the code examples more
readable.

Preface xi

014835-2 FM.F 8/31/01 8:09 AM Page xi

Icons Used in This Book
Many of the topics covered in this book have related topics. Quite often it is impor-
tant for you to understand these related topics if you are to understand the central
topic being discussed. It is can be rather easy however, to lose a reader if you go too
far off on a tangent. In order to both cover the important information and not lose
you, the reader, I’ve put these topics into a Note. For example:

Notes explain a related topic. They are also used to remind you of particular

features of C# that can help you write good COM+ components.

xii Preface

014835-2 FM.F 8/31/01 8:09 AM Page xii

Acknowledgments
I am truly grateful to the team of reviewers and editors who worked so hard and dili-
gently on this book. Although my name appears on the cover, this book is truly a
team effort. Matt Lusher and Eric Newman filled the project editor role on this project
and provided great feedback. Matt made stressful times much more bearable through
his professionalism and good humor. Chris Jones caught the grammar mistakes
I made late at night while I was sleepy and bleary-eyed. A good acquisitions editor
glues the whole book together and tries to keep everyone happy, and Sharon Cox was
terrific in this capacity. Sharon no doubt buffered me from lots of issues that I would
normally have had to deal with. Thank you, Sharon! I owe a huge debt of gratitude to
the Production Department at Hungry Minds; these folks are the ones who suffered
my artwork and screenshot mistakes. You guys really came through in a pinch.
I should also thank Rolf Crozier, who was the acquisitions editor early on in this
book. Rolf pitched the book idea to Hungry Minds and got the whole ball rolling.

The best part about being in a field that you love is the people you get to share
your ideas with and learn from. Steve Schofield is the most enthusiastic guy I have
ever met when it comes to learning new technology. His excitement for .NET is
infectious. Steve also provided me with the contacts inside Hungry Minds I needed
to make this book a reality. Nick McCollum was an awesome technical editor for the
book. He kept me honest throughout and helped me relate many topics better to the
reader. I would also like to thank a couple of key Microsoft employees, Mike
Swanson and Shannon Paul. Mike was always there to offer assistance and get
things I needed. He also absorbed many of my complaints about the technology
with a smile and a nod. Shannon provided me with key information about COM+
events. He also kept me on track when it came to that subject. Thank you, Shannon.

I now realize that writing a book is a monumental undertaking. No one can
undertake such an endeavor without the proper support system of friends and fam-
ily. I am fortunate enough to have a wonderful support system. The cornerstone of
that system are my parents. My dad showed me by example what a work ethic
really is. This is the hardest-working man I have ever seen. I am grateful that some
of his work ethic rubbed off on me. My mother provides me with unconditional
support and encouragement. I must thank her for understanding why she hardly
saw me for months while I was cooped up writing this book. Last but certainly not
least I must thank Jacque. Jacque is a very special friend who bore the brunt of my
crankiness during the course of this book. She was able to pick me up at my lowest
times with her compassion and positive energy. Thank you, sweetie!

014835-2 FM.F 8/31/01 8:09 AM Page xiii

014835-2 FM.F 8/31/01 8:09 AM Page xiv

Contents at a Glance

Preface . ix

Acknowledgments . xiii

Part I Interoperating with COM

Chapter 1 Understanding .NET Architecture 3
Chapter 2 Consuming COM Components from .NET 21
Chapter 3 Consuming .NET Components from COM 33

Part II COM+ Core Services

Chapter 4 Transactions . 47
Chapter 5 Security . 65
Chapter 6 Events . 83
Chapter 7 Object Pooling . 101
Chapter 8 Queued Components . 121

Part III Advanced COM+ Computing

Chapter 9 Remoting . 155
Chapter 10 The Future of COM+ and .NET 185

Appendix A: What’s on the CD-ROM? 209

Appendix B: The COM+ Shared Property Manager 215

Appendix C: Introduction to C# 233

Appendix D: Compensating Resource Managers . . 259

Index . 273

014835-2 FM.F 8/31/01 8:09 AM Page xv

014835-2 FM.F 8/31/01 8:09 AM Page xvi

Contents

Preface . ix

Acknowledgments . xiii

Part I Interoperating with COM

Chapter 1 Understanding .NET Architecture 3
Loading and Executing Code Inside

the Common Language Runtime . 4
Microsoft Intermediate Language and Metadata 4

Class Loader . 6

Just In Time Compiler . 7

Automatic Memory Management . 7

Assemblies . 12
The Manifest . 12

Versioning . 13

Shared Names . 14

Global Assembly Cache . 14

Locating Assemblies . 15

Application Domains . 18
Common Type System . 18

Chapter 2 Consuming COM Components from .NET 21
Converting Type Libraries to .NET Namespaces 21

Converting Typedefs, Enums, and Modules 25

Runtime Callable Wrapper . 27
Preserving Object Identity . 27

Maintaining COM Object Lifetime . 28

Proxying Interfaces . 29

Marshalling Method Calls . 30

Threading Issues . 30
Chapter 3 Consuming .NET Components from COM 33

Converting Assemblies to COM Type Libraries 33
Registering Assemblies with COM . 37
COM Callable Wrapper . 38

Preserving Object Identity . 39

Maintaining Object Lifetime . 39

014835-2 FM.F 8/31/01 8:09 AM Page xvii

Standard COM Interfaces: IUnknown & IDispatch 39

Proxying Interfaces . 40

Marshalling Method Calls . 40

Activation Lifecycle . 41

Design Guidelines for .NET Components . 43

Part II COM+ Core Services

Chapter 4 Transactions . 47
ACID Requirements . 47

Atomic . 47

Consistent . 48

Isolated . 48

Durable . 49

Understanding the COM+ Transaction Process 50
Logical Transaction Lifecycle . 50

Physical Transaction Lifecycle . 55

Writing Transactional Components in C# 58
ServicedComponent Class . 58

Attribute-based Programming . 59

Installing a Class into a COM+ Application 60

JITA, Synchronization, and AutoComplete 61

Developing the Root and Worker Objects 62

Chapter 5 Security . 65
Understanding Windows Security . 66

Authentication . 66

Authorization . 67

Special Accounts . 68

Impersonation . 69

Authenticating over the Wire . 70
Understanding Authentication in IIS . 71

Using the COM+ Security Model . 72
Authentication & Authorization . 72

Role-based Security . 76

Understanding Security Scope . 78

Chapter 6 Events . 83
Understanding the Need for LCEs . 83

.NET Event Architecture . 84

Comparing TCE Events to COM+ LCE . 86

xviii Contents

014835-2 FM.F 8/31/01 8:09 AM Page xviii

The LCE Architecture . 87
Understanding Subscriptions . 89

COM+ Attributes . 89

Controlling Subscriber Notification Order 91

Writing LCE Components in C# . 92
Your First LCE Component . 93

Creating Subscriptions by Using Component Services Explorer . . 95

.NET Framework EventClass Attribute . 97

Using Transactions with Events . 98

Chapter 7 Object Pooling . 101
Understanding Object Pooling . 101

When to Use Object Pooling . 103

Object Pooling Attributes . 104

Object Pooling and Scalability . 106

Object Pooling and Nondeterministic Finalization 107

Requirements for Poolable Objects . 108

Requirements for Transactional Objects . 109

Object Pooling in C# . 111
Pooled and Nonpooled Components . 111

Analyzing the Client . 117

Chapter 8 Queued Components . 121
Making the Case for Queued Components 122
Introduction to Microsoft Message Queue 124

Installing MSMQ . 124

Understanding Queues . 125

MSMQ Messages . 127

Developing MSMQ Applications by Using C# 128

Understanding Queued Components in COM+ 131
Client and Server Requirements . 131

Recorder, Listener, and Player . 132

Instantiating Queued Components . 135

Exception Handling . 137

Queued Component Design Considerations 141

Using Other COM+ Services with Queued Components . . . 142
Role-Based Security . 142

Transactions . 143

Loosely Coupled Events . 143

Developing Queued Components in C# 144
HelloWorld Queued Component . 144

Loosely Coupled Events and Queued Components 148

Exception Classes . 149

Contents xix

014835-2 FM.F 8/31/01 8:09 AM Page xix

Part III Advanced COM+ Computing

Chapter 9 Remoting . 155
.NET Remoting Framework . 156

Marshaling Defined . 156

Endpoint Defined . 157

Well-known Objects . 158

Marshaling by Reference Versus Marshaling by Value 158

Activating a Remote Object . 161

Proxies . 165

Channels . 168

Remote Object Lifetime . 169

Introduction to SOAP . 171
HTTP Header . 172

SOAP Message . 173

Remoting ServicedComponents . 177
SingleCall Component Using SOAP and HTTP 178

SingleCall Component Using Binary Formatter and TCP 181

Client-Activated ServicedComponent . 183

Chapter 10 The Future of COM+ and .NET 185
New Features of COM+ 1.5 . 185

COM+ Applications as Services . 186

Application Partitions . 188

Application Process Dump . 191

Component Aliasing . 191

Configurable Isolation Levels . 192

Low-Memory Activation Gates . 193

Process Recycling . 193

Application Pooling . 194

New Features of IIS 6.0 . 195
New Server Architecture . 196

Application Pools and Web Gardens . 200

Server Modes . 203

Worker-Process Management . 203

ASP Template Cache Tuning . 204

XML Support for the Metabase . 205

New Features of MSMQ . 206

Appendix A: What’s on the CD-ROM? 209

Appendix B: The COM+ Shared
Property Manager . 215

xx Contents

014835-2 FM.F 8/31/01 8:09 AM Page xx

Appendix C: Introduction to C# 233

Appendix D: Compensating Resource Managers . . 259

Index . 273

Contents xxi

014835-2 FM.F 8/31/01 8:09 AM Page xxi

014835-2 FM.F 8/31/01 8:09 AM Page xxii

Interoperating with COM
CHAPTER 1

Understanding .NET Architecture

CHAPTER 2
Consuming COM Components from .NET

CHAPTER 3
Consuming .NET Components from COM

Part I

024835-2 Pt1.F 8/31/01 8:09 AM Page 1

024835-2 Pt1.F 8/31/01 8:09 AM Page 2

Chapter 1

Understanding .NET
Architecture

IN THIS CHAPTER

� Loading and executing code inside the Common Language Runtime

� Automatic memory management

� Assemblies

� Application domains

� The Common Type System

THE .NET FRAMEWORK attempts to solve many of the problems historically associ-
ated with application development and deployment in the Microsoft Windows
environment. For example, using Visual Studio 6 and earlier versions it was impos-
sible to write a class in C++ and consume it directly inside Visual Basic. COM has
attempted to ease this pain by allowing compiled components to talk to one
another via a binary contract. However, COM has had its flaws. COM has provided
no clean way of discovering the services a component provides at runtime. The
.NET Framework provides mechanisms that solve this problem through a concept
known as reflection. Error handling is another issue the Framework solves.
Depending on what API call you are making, the API call might raise an error, or it
might return an error code. If the call returns an error code, you must have knowl-
edge of the common errors that might be returned. The Framework simplifies error
handling by raising an exception for all errors. The Framework library provides
access to lower-level features that were traditionally the domain of C++ program-
mers. Windows services, COM+ Object Pooling, and access to Internet protocols
such as HTTP, SMTP, and FTP are now firmly within the grasp of the Visual Basic
.NET or C# developer.

As you can see, the .NET Framework provides a number of services that level the
playing field for applications that run in its environment. All applications written
for .NET (including COM+ components written in C#) run inside an environment
called the Common Language Runtime (CLR). An application written to run inside
the CLR is considered managed code. Managed code can take advantage of the
services the CLR provides. Some of these services, such as Garbage Collection, are

3

034835-2 Ch01.F 8/31/01 8:09 AM Page 3

provided for you automatically. Other services, such as software versioning, require
your involvement.

This chapter covers the services provided by the CLR. An understanding of the
CLR will provide you with the proper grounding you need to develop COM+ com-
ponents in C#.

Loading and Executing Code Inside
the Common Language Runtime
As mentioned previously, the CLR provides many services that simplify develop-
ment and deployment of applications. Part of the reason the CLR is able to provide
these services is that all applications run on top of the same execution engine,
called the Virtual Execution System (VES). In fact, it is a combination of compiler
support and runtime enforcement of certain rules that allows the CLR to provide its
services. This section describes the runtime support available to your application as
well as the compiler and VES support needed to provide those services. Throughout
this chapter, the terms class and dll are used to illustrate the concepts because they
apply directly to the COM+ programming model. These concepts apply to all types
and file formats (exes and dlls).

Microsoft Intermediate Language and Metadata
When you compile a C# application, you do not get the typical file you expect.
Instead, you get a Portable Executable (PE) file that contains Microsoft Intermediate
Language (MSIL) code and metadata that describes your components. MSIL is an
instruction set that the CLR interprets. MSIL tells the CLR how to load and initialize
classes, how to call methods on objects, and how to handle logical and arithmetic
operations. At runtime, a component of the CLR, the Just In Time Compiler (JIT),
converts the MSIL instruction set into code that the operating system can run.

The MSIL instruction set is not specific to any hardware or operating system.
Microsoft has set the groundwork to allow MSIL code to be ported to other plat-
forms that support the CLR. Visual Studio .NET and Windows 2000 provide the
only tool and platform combination the CLR runs on, but it is conceivable that the
CLR can be ported to other platforms. If this becomes the case, your MSIL code can
be ported directly to these other platforms. Of course, making use of platform-
specific services such as those COM+ provides makes it more difficult to port your
application to other platforms.

As I mentioned previously, metadata is also present in your dll (Dynamic Link
Library) along with the MSIL. Metadata is used extensively throughout the CLR,
and it is an important concept to grasp if you want to understand how the .NET
Framework operates. Metadata provides information about your application that

4 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 4

the CLR needs for registration (into the COM+ catalog), debugging, memory man-
agement, and security. For COM+ components, metadata tells the CLR and the
COM+ runtime such things as the transaction level your class should use and the
minimum and maximum pool size for pooled components, to name just a few. This
metadata is queried at registration time to set the appropriate attributes for your
class in the COM+ Catalog. When you write the code for your class, you use coding
constructs called attributes to manipulate the metadata. Attributes are the primary
method for manipulating metadata in the .NET Framework.

Metadata provides a means for all of an application’s information to be stored in
a central location. Developers who write COM+ applications with an earlier version
of Visual Studio store an application’s information in a variety of locations. A com-
ponent’s type library stores information about the components, their methods, and
interfaces. The Windows registry and the COM+ Catalog store information about
where the dll is located and how the COM+ runtime must load and activate the
component. In addition, other files may be used to store information that the com-
ponent needs at runtime. This dislocation of information results in confusion for
developers and administrators. Visual Studio .NET attempts to resolve this problem
by using metadata to describe all of an application’s dependencies.

Metadata goes beyond describing the attributes you have placed in your

code. Compilers use metadata to build tables inside your dll that tell where

your class is located inside the dll and which methods, events, fields, and

properties your class supports. At runtime, the Class Loader and JIT query

these tables to load and execute your class.

Chapter 1: Understanding .NET Architecture 5

C# Code: Truly Portable?
If your application uses COM+ services or other services specific to Microsoft or
another vendor, then you run the chance of those services being unavailable on other
platforms. If, on the other hand, your application uses services such as the TCP/IP
support provided in the System.Net.Sockets namespace, your application might
be relatively portable. TCP/IP is a well supported and common service that most
platforms are likely to support. As long as the support does not differ greatly from
platform to platform, chances are that this type of code will be highly portable. The
point to understand here is that MSIL and the CLR provide a consistent set of
standards for various vendors to shoot for. Although true portability with code written
for the CLR is not a reality yet, it soon may be.

034835-2 Ch01.F 8/31/01 8:09 AM Page 5

Class Loader
Once you have written and compiled your code, you want to run it, right? Of
course. However, before the CLR can run your class, your class must be loaded and
initialized. This is the Class Loader’s job. When application A attempts to create a
new instance of class C, the Class Loader combines information it already knows
about A with information from administratively defined XML configuration files
and determines where C is physically located. (The process of locating a particular
type is covered in more detail in the “Assemblies” section, later in this chapter.)
Once the Class Loader finds the class, it loads the dll into memory and queries the
dll’s metadata tables for the offset of the class. The offset is a location where
the Class Loader can find the class inside the dll. The Class Loader also queries the
metadata to determine how it should lay out the class in memory. Generally,
the Class Loader is allowed to construct the class in memory any way it sees fit, but
there are times when the compiler needs to tell the Class Loader how the class must
be constructed in memory. Three options are available to tell the Class Loader how
to lay out the class:

� autolayout is the default and allows the Class Loader to load the class
into memory in any manner acceptable to the Class Loader.

� layoutsequential forces the loader to lay out the class with its fields in
the same order the compiler emits.

� explicitlayout gives the compiler direct control over how the class is
constructed in memory.

I should emphasize that the compiler has the responsibility for generating the
correct MSIL code to instruct the Class Loader on how it should lay out classes in
memory. Microsoft provides documentation on how to instruct the Class Loader on
a class’s layout in the Tool Developer Guide. The Tool Developers Guide comes as
part of the Visual Studio .NET product documentation. As a COM+ developer you
do not need to worry about specifying the layout scheme of your classes.

The Class Loader performs a cursory verification of the loaded class and its caller.
The Class Loader examines the class to see if it has references to other classes that
have not been loaded. If it does have such references, the Class Loader either loads the
next class or, if it cannot, records this fact for later use. The Class Loader also enforces
accessibility rules. For example, if a class being loaded inherits from another class,
the Class Loader ensures that the child has not attempted to inherit from a sealed
class or to extend a method the base class has deemed final. Any references made by
classes already loaded to the newly created class are verified. Conversely, any refer-
ences made by the new class to classes already loaded are verified.

6 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 6

Once the class has been located and verified as safe to execute, the Class Loader
creates a stub for each of the methods that have been loaded for the class. The stub
acts as an intermediary between the consumer of the class and the method being
called. The stub’s responsibility is to invoke the JIT.

Just In Time Compiler
The Just In Time Compiler is responsible for converting MSIL instructions into
native machine code. It performs this task only when methods are first called on a
object. Once invoked, the JIT preserves the converted MSIL in memory. Subsequent
calls to the method go directly to the native machine code.

The JIT compiler is responsible for performing a much more thorough verifica-
tion process than the Class Loader performs. The JIT verification process ensures
that only legal operations are performed against a class. It also ensures that the
type being referenced is compatible with the type being accessed. For example, if a
class A references an instance of class CFoo and calls one of CFoo’s methods,
ToString(), the JITer ensures that the call to Cfoo.ToString() is being called for
an instance of CFoo. The JIT compiler also checks memory access at this point. The
JIT does not allow a class to reference memory that the class is not supposed to
access. Security access permissions are also checked at this point on various levels.

The JIT operates on the concept that not all of an application’s code is always
executed. Rather than waste CPU time and memory by converting an entire MSIL
file to native code, the JIT converts only the code the application needs at any
given time. This is one of the key strategies behind improving the performance and
scalability of applications written for the .NET Framework.

Automatic Memory Management
The task of allocating and deallocating memory has often been a source of bugs in
many applications, particularly those written in C++ where this is more of a man-
ual process than in languages such as Visual Basic. The CLR addresses this issue by
allocating and deallocating memory from a managed heap.

The CLR creates and initializes the managed heap when it starts an application.
In addition, the CLR initializes the heap’s pointer to the base address of the heap.
The heap’s pointer contains the address of the next available block of memory.
Figure 1-1 shows the managed heap after it has been initialized and before any
objects have been created.

When you create an object by using the new keyword in C#, the CLR allocates
memory from the heap and increments the heap’s pointer to the next available
block of memory. Figure 1-2 shows the heap after the first call to new in an
application.

Chapter 1: Understanding .NET Architecture 7

034835-2 Ch01.F 8/31/01 8:09 AM Page 7

Figure 1-1: Managed heap before Garbage Collection

The CLR can allocate memory from the managed heap much faster than it can
allocate memory from a traditional unmanaged Win32 heap. In a typical unman-
aged Win32 heap, allocation is not sequential. When memory is allocated from a
Win32 heap, the heap must be examined to find a block of memory that can satisfy
the request. Once a block of memory is found, data structures that the heap
maintains must be updated. The managed heap, on the other hand, only needs to
increment the heap pointer.

At some point, the heap pointer is incremented to the top of the heap, and no more
memory is available for allocation. When this occurs, a process known as Garbage
Collection is started to free resources that are no longer in use. The Garbage Collector
starts by building a list of all objects the application is using. The first place the
Garbage Collector looks is the application’s roots, which include the following:

� Global object references

� Static object references

� Local variables (for the currently executing method)

� Parameters (for the currently executing method)

� CPU Registers that contain object references

Heap before any objects are created

Unallocated memory

Heap pointerHeap's base address

8 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 8

Figure 1-2: Managed heap after memory allocation

A full list of application roots is maintained by the JIT compiler, which the
Garbage Collector is allowed to query at runtime. Once the full list of roots has been
identified, the Garbage Collector walks through each object reference in each of the
roots. If a root contains references to other objects, these references are also added
to the list. Once the Garbage Collector has walked through the entire chain of object
references, it examines the heap to find any references that are not in its list.
References not in the list are considered unreachable and can be freed. After the
memory has been released for the unreachable objects, the Garbage Collector com-
pacts the heap and sets the heap pointer to the next available block in the heap.

It may seem that any time saved by memory allocation is now consumed by the
Garbage Collection process. This is not entirely the case. The Garbage Collector uses
a technique called Generational Garbage Collection to optimize the Garbage
Collection process. Generational Garbage Collection assumes the following is true
about an application:

� New objects have shorter lifetimes than old objects.

� A new object’s memory can be released sooner than an old object’s memory.

� New objects have strong relationships with one another.

Heap after first call to new

Unallocated memory

Heap pointer

Allocated memory

Chapter 1: Understanding .NET Architecture 9

034835-2 Ch01.F 8/31/01 8:09 AM Page 9

� New objects are accessed at about the same time.

� Compacting a portion of the heap is faster than compacting the entire heap.

Based on these assumptions, the Garbage Collector logically breaks the heap into
three generations: Generation 0, Generation 1, and Generation 2. Generation 0
objects are newly created objects that have not undergone a Garbage Collection
cycle. Generation 1 objects have survived one Garbage Collection cycle. Objects in
Generation 2 have gone through at least two Garbage Collection cycles and are
considered the oldest objects. When a Garbage Collection occurs, the Garbage
Collector looks at Generation 0 objects first for any garbage that can be cleaned up.
If the Garbage Collector is able to reclaim enough space from a Generation 0
collection, it does not attempt to collect objects from older generations. The
Garbage Collector works through Generations 0, 1, and 2 as needed to reclaim
enough memory to satisfy a request. The Garbage Collector has to walk through
only a subsection of the heap to perform a Garbage Collection. This greatly
enhances the Garbage Collector’s performance.

The Garbage Collection feature in .NET has sparked much controversy. The
controversy stems from the fact that a programmer does not know when his or her
object will be destroyed. This is referred to as nondeterministic finalization.
Nondeterministic finalization can be a particular problem for objects that hold on
to expensive resources such as handles to files or database connections. The prob-
lem arises when the object waits to release its resources until it is destroyed by the
Garbage Collector.

In traditional applications, this is not a problem because the object’s destructor
(or Class_Terminate in the case of Visual Basic) is called when the client frees its
reference to the object. In this scenario, the object has a chance to release its
resources immediately after the client is done with it. In .NET, objects do not have
destructors or Class_Terminate events. The closest you can come to the Visual
Basic Class_Terminate event if you are writing your application in C# is a method
called Finalize. The problem is that the Garbage Collector calls the Finalize
method — you do not. Finalize is not necessarily called when the client releases its
reference to the object. Resources such as database connections and file locks
remain open in your object until a Garbage Collection is run if they are closed in
the Finalize method. Microsoft’s workaround for these types of objects is a rec-
ommendation that you implement a Dispose or a Close method. The client can
call these methods explicitly just before it is done with your object in order to allow
you to free any resources.

Before we continue, let’s discuss what the Finalize method is intended for and
what the costs are of using it. First of all, as mentioned previously, the Finalize
method is called by the Garbage Collector, not by the client using the object. The
Finalize method should not be called by a program consuming your object. In
fact, the C# compiler does not compile a class if it has implemented a public final-
izer. The finalizer should be declared protected so that only classes that inherit from
the object can call the Finalize method. The key points to remember about imple-
menting a Finalize method are as follows:

10 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 10

� Implement this method only if you must. A performance hit is associated
with implementing this method (see the next paragraph for details).

� Release only references held by the object. Do not create new references.

� If you are inheriting from another class, call your base class’s Finalize
method via base.Finalize()— assuming it has a Finalize method.

� Declare the Finalize method as protected only. Currently, this is the only
access attribute the C# compiler allows.

The first bullet brings up an important point. When an object is created with the
new keyword, the CLR notices that the object has implemented a Finalize method.
These types of objects are recorded onto an internal Garbage Collector queue called
the Finalization Queue. Remember that when a Garbage Collection cycle occurs, the
Garbage Collector walks the managed heap, looking for objects that are not reach-
able. If the Garbage Collector sees an unreachable object on the heap that has
implemented a Finalize method, it removes the reference to the object from the
Finalization Queue and places it on another queue called the Freachable Queue.
Objects on this queue are considered reachable and are not freed by the Garbage
Collector. As objects are placed on the Freachable Queue, another thread awakes to
call the Finalize method on each of the objects. The next time the Garbage
Collector runs, it sees that these objects are no longer reachable and frees them
from the heap. The result of all this is that an object with a Finalize method
requires two Garbage Collection cycles in order to be released from the heap.

As you can see, the CLR does a lot of work on your behalf behind the scenes.
This can be good and bad at times. It can improve your productivity because the
task of tracking down memory leaks and bugs is greatly simplified. On the other
hand, this type of black-box functionality can make it difficult to see what your
application is really doing. Fortunately, the SDK comes with several performance
counters that can help you monitor the performance of your application. Some of
the counters relevant to our discussion are JIT Compilation Counters, Loading
Counters, and Memory Counters. These counters are highlighted as follows.

� JIT Compilation Counters:

� IL Bytes Jitted / sec: the number of bytes of IL code being converted to
native code per second

� # of IL Bytes Jitted: the number of IL bytes that have been JITed since
application startup

� # of Methods Jitted: the number of methods that have been JITed since
application startup

� Loading Counters:

� Current Classes Loaded: the current number of classes loaded into the
CLR

Chapter 1: Understanding .NET Architecture 11

034835-2 Ch01.F 8/31/01 8:09 AM Page 11

� Total # of Failures: the total number of classes that have failed to load
since the application started up

� Total Classes Loaded: the total number of classes that have been
loaded since application startup

� Memory Counters:

� # Bytes in Heap: The total number of bytes in the managed heap. This
includes all generations.

� Gen 0 Heap Size: The size of the Generation 0 heap. Similar counters
for Generations 1 and 2 are also provided.

� # Gen 0 Collections: The number of collections on Generation 0.
Similar counters for Generations 1 and 2 are also provided.

Assemblies
Assemblies are the point at which the CLR implements versioning. Assemblies are
also the point at which name resolution occurs. Assemblies can be thought of as
logical dlls that contain the implementation of types (such as classes and inter-
faces), references to other assemblies, and resource files such as JPEGs. Assemblies
in and of themselves are not applications. Applications reference assemblies to
access types and resources of the assembly. Think of .NET applications as made up
of one or more assemblies. A reference to an assembly can be made at compile time
or at runtime. Usually, references are made at compile time. This is similar to set-
ting a reference to a COM library in a Visual Basic project. These references are
contained in a section of the assembly called the manifest.

The Manifest
The manifest contains the information the CLR needs to load the assembly and to
access its types. Specifically, the manifest contains the following information:

� The name of the assembly

� The version of the assembly (includes major and minor numbers as well as
build and revision numbers)

� The shared name for the assembly

� Information about the type of environment the assembly supports, such as
operating system and languages

� A list of all files in the assembly

� Information that allows the CLR to match an application’s reference of a
type to a file that contains the type’s implementation

� A list of all other assemblies this assembly references. This contains the
version number of the assembly being referenced.

12 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 12

Usually, the manifest is stored in the file that contains the assembly’s most
commonly accessed types. Less commonly accessed types are stored in files called
modules. This scenario works particularly well for browser-based applications
because the entire assembly does not need to be downloaded at once. The manifest
identifies modules that can be downloaded as needed.

Figure 1-3 shows a logical representation of a file that contains both the assem-
bly’s manifest and types implemented in the file.

Figure 1-3: Assembly’s logical dll structure

Versioning
As stated previously, the assembly’s manifest contains the version of the assembly.
The version is made up of four parts: the major version, the minor version, the
build number, and the revision number. For example, the version of the
System.Windows.Forms assembly in the .NET SDK Beta 2 is 1.0.2411.0, where 1 is
the major version, 0 is the minor version, 2411 is the build number, and 0 is the
revision number. The CLR compares the major and minor version numbers with
those the application asks for. The CLR considers the assembly to be incompatible if

dII containing an assembly's
manifest

Assembly manifest

Type metadata

MSIL code

Version information
Assembly's shared name
References to other assemblies
References to other files in the assembly

Implementation of all types

List all types available in this file
Describes each type's visibility
COM+ settings

Chapter 1: Understanding .NET Architecture 13

034835-2 Ch01.F 8/31/01 8:09 AM Page 13

the major and minor version numbers do not match what the application is asking
for. By default, the CLR loads the assembly with the highest build and revision
numbers. This behavior is known as Quick Fix Engineering (QFE). QFE is intended
to allow developers to deploy fixes or patches to applications such as fixing a secu-
rity hole. These changes should not break compatibility for applications using the
assembly.

Shared Names
In addition to the version number, the assembly’s manifest contains the name of the
assembly, which is simply a string describing the assembly and optionally a shared
name (also referred to as a “strong” name). Shared names are used for assemblies
that need to be shared among multiple applications. Shared names are generated
using standard public key cryptography. Specifically, a shared name is a combina-
tion of the developer’s private key and the assembly’s name. The shared name is
embedded into the assembly manifest at development time using either tools pro-
vided in the .NET SDK or the Visual Studio .NET development environment. The CLR
uses shared names to ensure that the assembly the application references is indeed
the assembly being accessed.

Global Assembly Cache
Now that we have a mechanism for uniquely identifying an assembly that multiple
applications can use, we need a place to store these assemblies. This is the Global
Assembly Cache’s job. The Global Assembly Cache is a logical folder that stores all
assemblies that can be shared among applications. I say it is a logical folder
because the assemblies themselves can be stored anywhere in the file system. An
assembly is placed in the Global Assembly Cache at deployment time using either
an installer that knows about the assembly cache, the Global Assembly Cache
Utility (gacutil.exe) found in the .NET Framework SDK, or by dragging and
dropping the file with the assembly manifest into the \winnt\assembly folder. The
\winnt\assembly folder is implemented with a Windows Shell extension, so it can
be viewed from Windows Explorer or from My Computer. Figure 1-4 shows what
the Global Assembly Cache looks like when viewed from My Computer.

Figure 1-4: Global Assembly Cache

14 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 14

The Global Assembly Cache stores basic information about the assembly, includ-
ing the assembly name, the version, the last modified date, the public key used to sign
the assembly, and the location in the file system of the file that contains the manifest.
There are several benefits to adding an assembly to the Global Assembly Cache:

� The Global Assembly Cache allows you to share assemblies among
applications.

� An application can gain several performance improvements.

� Integrity checks are made on all files the assembly references.

� Multiple versions of an assembly can be stored in the Global Assembly
Cache; QFE is applied automatically if multiple versions exist.

The Global Assembly Cache improves performance for assemblies in two ways.
First, assemblies in the Global Assembly Cache do not need to be verified each time
they are accessed. If you remember our previous discussion, when an assembly is ref-
erenced the CLR ensures that the assembly an application is referencing is the one
being accessed. If an assembly is in the Global Assembly Cache, this verification
process is skipped. Second, assemblies in the Global Assembly Cache need to be
loaded into the CLR only once. Multiple applications access a single instance of the
assembly. This decreases the load time for assemblies in the Global Assembly Cache.
In addition, because all applications are accessing the same instance, a greater chance
exists that methods being called are already JIT compiled. Of course, there is a down
side to using the Global Assembly Cache. If most of your assemblies are application
specific (that is, only one application uses them), you are introducing an extra admin-
istrative step by installing these types of assemblies into the Global Assembly Cache.

Locating Assemblies
Before the CLR can access any types in an assembly, it must locate the assembly.
This is a multistep process that begins with the application’s configuration file. The
application’s configuration file is XML formatted. It is named the same as the appli-
cation except it uses a .cfg extension. The configuration file, if it exists, is in the
same folder as the application. For instance, if the application is c:\program
files\Microsoft office\Word.exe, the application’s configuration file is
c:\program files\Microsoft office\Word.exe.cfg. The configuration file tells
the CLR several things when it tries to locate an assembly:

� The version of the assembly to use instead of the one being asked for

� Whether to enforce QFE

� Whether the application should use the exact version it is compiled
against (known as safe mode)

� The exact location to find the assembly being referenced (known as a
codebase)

Chapter 1: Understanding .NET Architecture 15

034835-2 Ch01.F 8/31/01 8:09 AM Page 15

The example that follows shows a section of the configuration file called the
BindingPolicy.

<BindingPolicy>
<BindingRedir Name=”myAssembly”

Originator=”e407643ef63677f0”
Version=”1.0.0.0” VersionNew=”2.1.0.0”
UseLatestBuildRevision=”no”/>

</BindingPolicy>

The BindingPolicy section tells the runtime which version of an assembly to
replace with another version. In this example, we are telling the CLR to use version
2.1.0.0 instead of version 1.0.0.0 for the assembly named myAssembly. Notice that the
major and minor versions are different. This overrides the default behavior of the
CLR, which normally does not allow us to load an assembly with a different major or
minor version number. The other tag of interest to us is UseLatestBuildRevision.
This tag allows us to turn off or turn on the CLR’s QFE policy. In our example, we
have set this tag to “no,” which tells the CLR not to use assemblies that have greater
build or revision numbers. If we omit this tag or set it to “yes,” the CLR loads the
assembly that has the greatest build and/or revision number. Finally, the Originator
tag represents the assembly creator’s public key that has been used to sign the
assembly.

The safe mode section of the configuration file tells the CLR whether or not it
should use only assemblies the application is compiled against. If safe mode is
turned on, the CLR loads only assemblies the application has referenced directly.
Safe mode is intended to be used to revert the application to a state where it can
reference only assemblies it was originally compiled against. The example that
follows shows how safe mode can be turned on for an application.

<BindingMode>
<AppBindingMode Mode=”safe”/>
</BindingMode>

It is important to note that safe mode is turned on for an entire application. Once
safe mode is set to “safe,” it is applied for all assemblies. Safe mode is turned off by
default; however, it can be explicitly turned off by setting the Mode attribute to
“normal.”

In addition to overriding the versioning rules, the configuration file can specify
exactly where an assembly can be found. The Assemblies collection specifies
locations for each of the application’s assemblies through a CodeBase attribute.

<Assemblies>
<CodeBaseHint Name=”myAssembly”

Originator=”e407643ef63677f0”

16 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 16

Version=”2.1.0.0”
CodeBase=”c:\winnt\myNewDll.dll”/>

</Assemblies>

In this example, we are telling the CLR that version 2.1.0.0 of myAssembly can
be found at c:\winnt\myNewDll.dll. If a code base is specified and the assembly
is not found, the CLR raises an exception.

But what happens if the code base is not specified? At this point, the CLR starts
a process known as probing. When the CLR probes for an assembly, it searches for
the assembly in a specific set of paths, in the following order:

1. The application’s current directory. The CLR appends .mcl, .dll, and .exe
file extensions when referencing the assembly.

2. Any PrivatePaths specified in the application’s configuration file. The
name of the assembly is also added to this path.

3. Any language-specific subdirectories

4. The Global Assembly Cache

Step four is where things get interesting. If the configuration file does not con-
tain an Originator attribute, probing stops, and an exception is raised. However, if
an Originator has been specified and QFE is enabled, the CLR searches the Global
Assembly Cache for the assembly that has the highest build and revision numbers.

Let’s go though an example of probing. Assume the following conditions are
true about our application:

� The application’s name is myapp.exe.

� The application directory is c:\program files\myapp\.

� Our configuration files specify PrivatePaths as <AppDomain
PrivatePath=”complus”>.

� myassembly is located in the Global Assembly Cache with the same major
and minor version number the application references, and an Originator
entry is included in our configuration file.

� QFE is enabled.

With our conditions defined previously, our probing paths look like the following:

1. C:\program files\myapp\myassembly.mcl

2. C:\program files\myapp\myassembly.dll

3. C:\program files\myapp\myassembly.exe

4. C:\program files\myapp\myassembly\myassembly.mcl

Chapter 1: Understanding .NET Architecture 17

034835-2 Ch01.F 8/31/01 8:09 AM Page 17

5. C:\program files\myapp\myassembly\myassembly.dll

6. C:\program files\myapp\myassembly\myassembly.exe

7. C:\program files\myapp\complus\myassembly.mcl

8. C:\program files\myapp\complus\myassembly.dll

9. C:\program files\myapp\complus\myassembly.exe

10. Global Assembly Cache

Application Domains
Just as assemblies can be thought of as “logical dlls,” application domains can be
thought of as “logical exes.” On a Windows platform, a Win32 process provides
isolation for applications running on the system. This isolation provides a number
of services to applications:

� Faults in one application cannot harm the other application.

� Code running in one application cannot directly access another applica-
tion’s memory space.

� Win32 processes can be stopped, started, and debugged.

The CLR is able to provide these services to application domains through its type
safety and its rigorous code verification process. The CLR is able to provide these
features at a much lower cost than traditional Win32 applications because it can
host multiple application domains in a single Win32 process, thus reducing the
number of Win32 processes needed to run applications. The CLR improves perfor-
mance by reducing the number of context switches the operating system must
perform on physical processes. In addition, when code in an application domain
accesses types in another application domain, only a thread switch may need to
occur as opposed to a process context switch, which is much more costly.

Common Type System
The Common Type System defines the rules of how types interact with one another
and how they are represented with metadata. These rules help solve some of the
conventional problems associated with reuse among programming languages. In
the .NET Framework, almost every entity is considered a type. Types can be classes,
interfaces, structures, enumerations, and even basic data types such as integers and
characters. All types can be classified into two categories: reference types and value
types.

18 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 18

In .NET, reference types include classes, interfaces, pointers, and delegates (sim-
ilar to C++ function pointers). Essentially, any reference type consists of three
parts: the sequence of bits that represent the current value of the type, the memory
address at which the bits start, and the information that describes the operations
allowed on the type. I realize this description is pretty vague, so let’s make these
concepts more concrete. As you know from our discussion about Garbage
Collection, when you use the new keyword, the CLR allocates a block of memory for
the class and returns that memory location to your application. This is the memory
location where the class’s (read type’s) bits start. The “sequence of bits” is the value
of any fields, properties, method parameters, method return values, and so on at
any point in time. The final part of a reference type, the “description,” is the meta-
data that describes the public and private fields, properties, and methods. Reference
types come in three forms: object types, interface types, and pointer types. For the
purposes of this book, you can think of classes as object types, interfaces as inter-
face types, and pointer types as pointers in C++ (yes, C# supports pointers).
Reference types are always passed by reference, whereas value types are always
passed by value. For example, when a reference type is passed into a method as a
parameter, the memory address is passed to the method. When a value type is
passed to a method, a copy of the value’s bits is passed instead.

Value types can be built-in data types such as integers, or they can be user
defined such as enumerations and structures. Value types are a sequence of bits that
represents the value of the type at any point in time. Unlike reference types, which
are created from the managed heap, value types are created from a thread’s stack.
Value types are always initialized to 0 by the CLR.

Every value type has a corresponding reference type called a boxed type. To
access the boxed type of a value, the value must be cast to an object type. Consider
the following code example:

int iNum = 1;
Object oObj = iNum;
oObj = 2;
WriteLine(iNum);
WriteLine(oObj);
/* OUTPUT */
1
2

In this example, an integer value type, iNum, is declared and set equal to 1. Then
an Object reference type, oObj, is declared and set equal to iNum. An implicit cast
from iNum to oObj is performed at this point. Reference types can be converted to
value types. This is possible only if the reference type in question has a corre-
sponding value type.

Chapter 1: Understanding .NET Architecture 19

034835-2 Ch01.F 8/31/01 8:09 AM Page 19

Summary
As you can see, the CLR provides a lot of features and services. Many of these, if
not all, are completely new to someone with a Visual Basic or Visual C++ back-
ground. The better you understand how the CLR works, the better you are able to
diagnose problems as they arise, and the better you are able to plan the implemen-
tation of your components. As you work your way through the rest of this book,
remember a few key points about the CLR:

� Metadata is used to describe the attributes — such as transaction level —
of your COM+ components to the CLR and the COM+ runtime.

� The Global Assembly Cache can be used to store assemblies used by
multiple applications. It is likely that most C# components that use COM+
services are used by multiple applications.

� Shared names are required for assemblies that reside in the Global
Assembly Cache.

� The Garbage Collector can greatly simplify the development of compo-
nents, but it can also introduce complexity to components that access
expensive resources such as database connections.

� Assembly-versioning rules can be overridden with an application’s
configuration file.

In the next chapter, we discuss how COM interacts with the .NET CLR and how
the CLR interacts with COM.

20 Part I: Interoperating with COM

034835-2 Ch01.F 8/31/01 8:09 AM Page 20

Chapter 2

Consuming COM
Components from .NET

IN THIS CHAPTER

� Converting type libraries to .NET namespaces

� The Runtime Callable Wrapper

� Threading and performance issues between .NET and COM

AS YOU CAN SEE from Chapter 1, the .NET Framework provides many new features
for developers to consider when developing applications. The combination of all
these features requires us to adjust our mindset from the old ways of developing
applications with COM.

We cannot, however, throw out everything we know about COM just yet. It is
illogical to think that when a company starts developing applications with the .NET
Framework, the COM legacy will just disappear. In reality, there will be a long
period where .NET applications need to interact with COM and vice versa.

Today, many large e-commerce, Intranet, and other types of applications are
built with the Microsoft toolset that heavily leverage COM. Because time always
comes at a premium, it may not be possible to convert an application entirely to
.NET overnight. In addition, you may have to continue to use COM APIs exposed by
third party applications.

So what do you do if you want to use .NET to upgrade components of your
legacy COM application or to add new features? The answer lies in the COM
Interoperation (COM Interop) features of .NET. The COM Interop specification
allows .NET components to use COM objects, and vice versa.

Converting Type Libraries to .NET
Namespaces
If you remember from Chapter 1, .NET components talk to other .NET components
through assemblies. For a .NET component to talk to a COM component, an assembly
wrapper must be generated from the COM type library (TypeLib). The framework
provides a tool called the Type Library Importer (tlbimp.exe) to do just that. The 21

044835-2 Ch02.F 8/31/01 8:09 AM Page 21

Type Library Importer utility takes a COM type library as input and produces a .NET
assembly as output. The assembly this tool produces contains stub code that calls the
COM component’s methods and properties on your behalf. This stub code is the actual
implementation of the Runtime Callable Wrapper discussed in the next section.

Let’s see how the tlbimp.exe utility works by creating a simple HelloWorld
COM component using Visual Basic 6. The HelloWorld component contains one
function, Hello, which returns a string to the caller. The implementation of this
function is illustrated as follows:

‘ VB project name: prjHelloWorld
‘ class name: CHelloWorld
Public Function Hello() as string

Hello = “Hello World”
End Function

Let’s assume our project name is prjHelloWorld and our class name is
CHelloWorld, making the COM ProgID for this component prjHelloWorld.
CHelloWorld. The COM server is compiled to prjHelloWorld.dll.

The relevant information from the type library is depicted as follows.

Library prjHelloWorld {
Interface _CHelloWorld {

HRESULT Hello([out, retval] BSTR*);
}
coclass CHelloWorld {

[default] interface _CHelloWorld;
}

Notice that the Visual Basic project name has been converted to the name of the
type library. Also, Visual Basic has created a default interface for us by adding an
underscore to the class name.

Once we have our type library, we are ready to use the Type Library Importer.
The Type Library Importer is a command-line utility that requires a number of
parameters to build the assembly. For the moment, all we want to do is generate a
simple, private assembly. To do this, go to the command prompt, and change to the
directory containing the dll we have created. The following command generates an
assembly called AsmHelloWorld.dll:

tlbimp.exe /out:AsmHelloWorld.dll prjHelloWorld.dll

The /out: switch provides the name of the assembly file, and the
HelloWorld.dll provides the name of the file containing the type library. So now
we have an assembly that contains the stub code mentioned previously. But what
does this stub code look like? Let’s use the Framework’s MSIL Disassembler
(ildasm.exe) to peek inside the assembly. MSIL Disassembler is another utility that

22 Part I: Interoperating with COM

044835-2 Ch02.F 8/31/01 8:09 AM Page 22

reads the metadata of an assembly to give you a view of the types provided in the
assembly. To view the assembly with the MSIL Disassembler, enter the following
command at the prompt:

Ildasm.exe AsmHelloWorld.dll

After running this command, you should see the MSIL Disassembler window as
shown in Figure 2-1.

Figure 2-1: MSIL Disassembler View of AsmHelloWorld.dll

The MSIL Disassembler provides quite a bit of information. For now, we are con-
cerned with only three items:

� The .NET Namespace

� The default interface from COM

� The COM CoClass - CHelloWorld

At the top of the window, just under the key labeled “MANIFEST,” you see
the namespace prjHelloWorld. The Type Library Importer maps the COM type
library name to the name of the namespace for the assembly. Below the
prjHelloWorld namespace, you see the COM default interface of CHelloWorld
implemented as a .NET interface. Again, the type name from COM is carried directly
to .NET. Below the definition of the interface, you see the definition of the .NET
class. Inside the class definition, you find the line “implements
prjHelloWorld._CHelloWorld,” which tells the .NET runtime that this class
implements the _CHelloWorld interface defined previously. Finally, you have the
definition of the Hello method. As you can see, this function takes no parameters
and returns a string. The method’s signature has changed slightly from the defini-
tion in the type library. Notice the HRESULT is not present. I discuss the reason for
this later in this chapter. Also, the [out, retval] parameter from the type library
has been removed.

Chapter 2: Consuming COM Components from .NET 23

044835-2 Ch02.F 8/31/01 8:09 AM Page 23

The preceding example works if your .NET application is in the same directory as
the generated assembly. But what do you do if you want to use the new assembly
from multiple .NET applications? If you remember from Chapter 1, assemblies must
be put into the Global Assembly Cache to be shared among multiple .NET applica-
tions. To place an assembly into the Global Assembly Cache, the assembly must be
signed with a public/private key pair. The Type Library Importer provides a
switch — /keyfile— that allows you to sign the assembly with your public/private
key pair. The /keyfile switch points to a file that contains the public/private
key pair. To generate the key file, use the Shared Name Utility (sn.exe). Use the
following command to generate the key file:

Sn –k AsmHelloWorld.snk

The –k parameter tells the Shared Name Utility to generate the keyfile. The file
name following the parameter identifies the name of the new file that the utility
will create. In this case, I am storing my public/private key pair in a file called
AsmHelloWorld.snk.

Once you have created the keyfile, you can run the Type Library Importer by
using the /keyfile switch:

Tlbimp /out:AsmHelloWorld.dll
/keyfile:AsmHelloWorld.snk prjHelloWorld.dll

At this point, you can add the assembly to the Global Assembly Cache and use it
from any .NET application.

Properties of a COM object can be imported from its type library into an assem-
bly. If our CDog CoClass implements a property called Breed, the type library
contains property fields that let our users set and get the value of Breed.

Library Animals {
interface IDog {

[propput] HRESULT Breed ([in] BSTR);
[propget] HRESULT Breed ([out, retval] BSTR*);

}
coclass CDog {

[default] interface IDog;
}

}

When the Type Library Importer converts a type library such as the one shown
previously, it creates accessor methods for each property. Logically speaking, the
class is implemented in the following manner.

24 Part I: Interoperating with COM

044835-2 Ch02.F 8/31/01 8:09 AM Page 24

Namespace Animals {
Class CDog {

// private get accessor method called by runtime
private string get_Breed() { ... };

// private set accessor method called by runtime
private void set_Breed(string) { ... };

// public class field that you will Interop with
public string Breed; // public class property

}
}

If you are using Visual Studio .NET and you reference the Animals namespace in
your code, you will only be able to call the public property Breed and not the pri-
vate methods, get_Breed() and set_Breed(). Depending on where Breed is used
in a line of code (that is, the right side of an equation or the left side), the runtime
calls the proper accessor method for you.

Accessors are glorified fields that allow you to intercept the assignment and

retrieval of a field. Accessors are similar to the Let/Set/Get property proce-

dures you may have used when developing COM components in Visual

Basic 5 and 6. Appendix C, “Introduction to C#,” at the end of this book,

explains accessors in greater depth.

Converting Typedefs, Enums, and Modules
The preceding examples are intended to demonstrate how the common elements of
a type library map to a .NET namespace. However, type libraries do not contain
only classes and interfaces. They may contain enumerations (enums), type defini-
tions (typedefs), module-level constants, and methods (among other things).

Typedefs are used in COM just as they are used in programming languages such
as Visual Basic and C++. The Type Library Importer does not import COM typedefs
directly into an assembly. Consider the following typedef:

Library Animals {
Typedef [public] int AGE;
Interface _CDog {

HRESULT GetAgeInDogYears(
[in] AGE humanyears,

Chapter 2: Consuming COM Components from .NET 25

044835-2 Ch02.F 8/31/01 8:09 AM Page 25

[out, retval] AGE dogyears
);

}
}

Because the Type Library Importer cannot import the typedef directly, it
produces the interface as follows:

Namespace Animals {
Interface _CDog {

Int GetAgeInDogYears([ComAliasName(AGE)] int humanyears);
}

}

Notice that the type definition has been converted to its underlying type: int.
The importer also added the attribute, ComAliasName, to the method signature. The
ComAliasName attribute can be accessed through a technique known as reflection.
Reflection allows you to examine a type’s metadata for the purpose of determining
a type’s interfaces, methods, constructors and other similar details. The Visual
Studio .NET documentation contains more information on the topic of reflection if
you are interested.

Converting an enum from a type library to an assembly is pretty straightforward.
Consider the following enum defined in a COM type library.

Enum {
GoldenRetriever = 0,
Labrador = 1,
ChowChow = 2

} Breeds;

The Type Library Importer converts this enum into a managed enum with the
same name and fields. The managed enum is accessible directly from the managed
namespace.

In addition to typedefs and enums, a type library can define module-level meth-
ods and constants. When modules are converted from a type library to an assembly,
the name of the module is carried over and used to create a class with the same
name. The new .NET class contains the members of the original module. For
example, let’s look at a simple COM module called Security.

Module Security {
Const long SIDToken = 0x009312;
[entry(“ApplySidToThread”)]
pascal void ApplySidToThread([in] long SID);

}

When the Type Library Importer sees this module, it creates a new class called
Security, as follows.

26 Part I: Interoperating with COM

044835-2 Ch02.F 8/31/01 8:09 AM Page 26

Public class Security {
Public static const SIDToken = 0x009312;
Public static void ApplySidToThread(long SID);

}

In this example, I have deliberately left out some of the attributes, such as the
calling convention, extraneous to the discussion. The important thing to note here
is that members of the original module are converted to public, static members of
the new class.

Runtime Callable Wrapper
Now that you know how to convert a COM type library to a .NET assembly, you
need to learn how the .NET runtime interacts with COM. As I mention previously,
the assembly the Type Library Importer generates acts as a wrapper for the actual
COM class. This wrapper is referred to as the Runtime Callable Wrapper (RCW). The
RCW has several responsibilities:

� preserves object identity

� maintains COM object lifetime

� proxies COM interfaces

� marshals method calls

� consumes default interfaces such as IUnknown and IDispatch

Preserving Object Identity
To understand how the RCW maintains a COM object’s identity, let’s examine what
happens when you create a new instance of a managed class that wraps a COM
object. Calling new on a managed class has the effect of creating a new instance of
the RCW and a new instance of the underlying COM object. As methods are called
against the RCW, the RCW ensures that those methods are implemented by one of
the COM object’s supported interfaces. The RCW accomplishes this by calling
IUnknown->QueryInterface() for you behind the scenes. When you cast an
instance of the RCW class from one interface to another, the RCW looks in its
internal cache to see if it already has a reference to the requested interface. If
the interface is not cached, the RCW calls IUnknown->QueryInterface to see if the
COM object supports the interface. If the requested interface does not exist, the run-
time raises an exception. COM object identity is maintained by the RCW by not
allowing .NET clients to gain references to interfaces the underlying COM object
does not support.

Chapter 2: Consuming COM Components from .NET 27

044835-2 Ch02.F 8/31/01 8:09 AM Page 27

Maintaining COM Object Lifetime
In Chapter 1, we discuss the non-deterministic finalization problem. Non-
deterministic finalization deals with the fact that a type in .NET is not necessarily
destroyed when it is set to null or goes out of scope. Types in .NET are destroyed
only when a Garbage Collection occurs. This can be a particular problem for
managed classes such as RCWs that reference unmanaged COM objects.

COM implements a completely alternate system for maintaining object lifetime.
In COM, objects are reference-counted. Each time a COM client references an
object, it calls IUnknown->AddRef(), and each time it releases an object, it calls
IUnknown->Release(), allowing the COM object to decrement its internal-
reference count. Once the reference count reaches zero, the instance is released. The
RCW behaves the same as a traditional COM client by calling AddRef and Release
at the appropriate times. The difference is that Release is called by the RCW’s
Finalize method. Usually, this does not present much of a problem, but there are
two special circumstances when this can be problematic.

Take the case of a RCW wrapping a COM object that holds expensive resources
such as a database connection. If a COM object such as this releases its resources
only when its reference count goes to zero, the resources might be tied up until a
Garbage Collection occurs. Obviously, this is a wasteful use of resources.

The second problem may occur when the managed application shuts down. The
.NET runtime does not guarantee that finalizers are called during an application
shutdown. If an RCW’s finalizer is not called before the application shuts down,
Release cannot be called on any of the interfaces the RCW holds. The GC class
located in the System namespace has two methods — RequestFinalizeOnShutdown
and WaitForPendingFinalizers— that can be used to alleviate this problem.
RequestFinalizeOnShutown forces the runtime to call finalizers on classes during
shutdown. If you remember, a separate thread calls the Finalize method for
classes. WaitForPendingFinalizers tells the runtime to wait for the finalizer
thread to finish before shutting down. These methods must be used with caution
because they can significantly slow down an application’s shutdown time.

There is another way around the non-deterministic finalization problem. The .NET
framework allows you to take the responsibility of calling Release() yourself. The
System.Runtime.InteropServices namespace provides a class called Marshal.
Marshal.RelaseComObject takes an instance of an RCW class and decrements its
reference count by 1.

Using System.Runtime.InteropServices;
Class CMain {

Public void MakeDogBark() {
// RCW that maps to the CDog COM Class
CDog dog = new CDog();
dog.Bark();
Marshal.ReleaseComObject ((object)dog);

}
}

28 Part I: Interoperating with COM

044835-2 Ch02.F 8/31/01 8:09 AM Page 28

In the preceding code example, once we are finished with our RCW instance, we
decrement the reference to the underlying COM object by calling Marshal.
ReleaseComObject(). If the RCW is the only client using the underlying CDog
COM object, its reference count goes to zero, and its memory is freed. When the
next Garbage Collection occurs, the RCW instance of dog is freed. Any further use
of an RCW after its reference count reaches zero raises an exception.

Proxying Interfaces
The RCW is responsible for proxying interfaces exposed to managed clients and
consuming some “standard” COM interfaces not directly exposed to managed
clients. You can call any method on any interface exposed to a managed client. The
RCW is responsible for directing these method calls to the appropriate COM inter-
face. By doing this, the RCW prevents you from having to cast instances of the
RCW to the appropriate interface before calling the methods.

As you may have guessed already, the purpose of the RCW is to make a .NET
client think it is accessing another .NET object and to make the COM object think it
is being accessed by a COM client. One of the ways the RCW is able to do this is by
hiding certain interfaces from the .NET client. Table 2-1 lists some of the more
common interfaces the RCW consumes directly.

TABLE 2-1 INTERFACES THE RCW CONSUMES

COM Interface Description

Iunknown RCW consumes this interface when the .NET client
uses early binding to access COM objects. Early
binding to COM is accomplished by exporting the
COM type library into a .NET assembly and then
accessing the assembly types as if they were
ordinary .NET types. When a member is called on a
type from one of these assemblies, the RCW
determines the interface the member belongs to.
If the interface is not currently cached in the
RCW’s internal table of interfaces, the RCW calls
IUnknown-QueryInterface, passing the name
of the COM interface. If the interface exists,
IUnknown->AddRef is called. If the interface
does not exist, an exception is raised to the client.

Continued

Chapter 2: Consuming COM Components from .NET 29

044835-2 Ch02.F 8/31/01 8:09 AM Page 29

TABLE 2-1 INTERFACES THE RCW CONSUMES (Continued)

COM Interface Description

Idispatch The RCW consumes this interface when the .NET
client is using late binding to access members of
the COM object. Late binding to COM objects is
accomplished in .NET through a technique known
as reflection.

ISupportErrorInfo If the COM object implements these interfaces,
and IErrorInfo the RCW uses them to get extended information

about an error when a COM method returns a
failure HRESULT. The RCW maps the information
provided by these interfaces to the exception
thrown to the .NET client.

IConnectionPoint and These interfaces are used in COM to support the
IConnectionPointContainer COM event architecture. The RCW uses these

interfaces to map COM events to .NET events.

Marshalling Method Calls
In addition to all of its other responsibilities, the RCW is responsible for marshalling
method calls from the .NET client to the COM object. The RCW performs several
functions on behalf of the .NET client:

� Converts failure HRESULTs from COM to .NET exceptions. Failure HRESULTs
force an exception to be raised; success HRESULTs do not.

� Converts COM retval parameters to .NET function return values

� Marshals COM data types to .NET data types

� Handles the transitions from managed code to unmanaged code and
vice versa

Threading Issues
To write efficient .NET applications that use COM objects, it is important to under-
stand the threading differences between COM and .NET. The COM threading model
uses the concept of apartments. In the COM world, processes are logically broken

30 Part I: Interoperating with COM

044835-2 Ch02.F 8/31/01 8:09 AM Page 30

down into one or more apartments. Apartments can have a single thread running
inside them or they can have multiple threads. An apartment with a single thread is
called a Single Threaded Apartment (STA); an apartment running multiple threads
is called a Multi-Threaded Apartment (MTA). When a COM client calls into the COM
runtime to create a new instance of a component, the COM runtime reads the
component’s thread value from the Windows registry. The registry value tells the
COM runtime which apartment model the component supports. Most components,
including those Visual Basic 6 creates, are STA. Clients that run in different apart-
ment models from their components must go through a proxy-stub pair to make
method calls. The proxy-stub architecture allows seamless integration between
clients and components running in different apartments. This seamless integration
comes at a price, however. Your applications take an additional performance hit
when calls must be made across apartments. This is due to the fact that extra mar-
shalling must occur in order for the method calls to work properly.

In COM+, apartments are further divided into “contexts.” Contexts are

objects that contain COM+ properties such as the current state of a transac-

tion. Each apartment can have one or more contexts associated with it.

Contexts are the smallest unit of execution in COM+ in that an object can

only run in one context at any point in time.

The .NET runtime does not exactly follow the COM threading model. By default,
objects inside the .NET runtime run in an MTA. If the COM object and the .NET
thread do not support the same threading model, calls have to be made through the
proxy-stub pair.

To reduce the cost of crossing the runtime boundaries, you should understand
the threading of the COM component you are using. If you are using a STA COM
component, it is wise to set the state of the current .NET thread to STA. This can be
accomplished through the Thread class in the framework’s System.Threading
namespace. You can set the state of the current .NET thread to STA by calling the
following:

System.Thread.CurrentThread.ApartmentState = ApartmentState.STA.

The thread state must be set before any COM objects are created. By doing this,
the RCW can call directly into the underlying COM component without going
through a proxy-stub pair.

Chapter 2: Consuming COM Components from .NET 31

044835-2 Ch02.F 8/31/01 8:09 AM Page 31

Summary
In this chapter, we have covered the aspects of converting a COM type library to a
.NET assembly by using the Type Library Importer. As you have seen, this utility is
responsible for the following:

� converting type libraries to namespaces

� converting typedefs to their native types

� converting enums to .NET enums

� converting module-level methods and constants to static classes and
members

We have explored how the RCW is responsible for marshalling method calls
from .NET applications to COM components. In short, the RCW is responsible for
the following:

� preserving object identity

� maintaining COM object lifetime

� proxying COM interfaces

� marshalling method calls

� consuming default interfaces such as IUnknown and IDispatch

In the next chapter, we learn to make .NET classes available to COM-based clients.

32 Part I: Interoperating with COM

044835-2 Ch02.F 8/31/01 8:09 AM Page 32

Chapter 3

Consuming .NET
Components from COM

IN THIS CHAPTER

� Converting assemblies to COM type libraries

� Registering assemblies with COM

� COM Callable Wrapper

� Design guidelines for .NET components

JUST AS COM COMPONENTS can be consumed from .NET applications, .NET compo-
nents can be used from COM clients. In fact, the development model for doing this
is very similar to the model used for making COM components available to .NET
clients. In this chapter, we cover the steps necessary to make a .NET assembly
accessible from COM.

Converting Assemblies to COM
Type Libraries
The .NET SDK comes with two tools that can be used to generate type libraries from
assemblies: the Type Library Exporter (tlbexp.exe) and the Assembly Registration
Tool (regasm.exe). The Type Library Exporter takes an assembly as input and pro-
duces the corresponding type library as output. The Assembly Registration Tool
also produces a type library from a .NET assembly and registers the type library and
its COM classes in the Windows Registry. Because we are concerned with more than
just creating type libraries, let’s focus on the Assembly Registration Tool.

The Assembly Registration Tool is yet another command-line utility. Let’s take a
look at some of its more common parameters. Table 3-1 identifies the parameters
we are using in this section.

33

054835-2 Ch03.F 8/31/01 8:09 AM Page 33

TABLE 3-1 ASSEMBLY REGISTRATION TOOL OPTIONS

Options Description

/regfile:RegFileName.reg Prevents the normal COM registry entries from
being entered into the registry. The
RegFileName.reg contains the entries that
would have gone into the Windows Registry.

/tlb:TypeLibFileName.tlb Specifies the destination file for the newly
generated COM type library. This switch cannot
be used in conjunction with /regfile.

/u and /unregister Unregisters any classes that have been
registered from this assembly.

Let’s go through a simple example to see how this tool is used. Consider the
following .NET class.

// Assembly file name: Animal.dll
using System;
namespace Animals {

public class CDog {
public void Bark() {

Console.WriteLine(“Woof Woof”);
}

}
}

We compile this class to Animal.dll and run it through the Assembly Registration
Tool with the following syntax: regasm /tlb:animal.tlb animal.dll. Next, if we
look at the resulting type library, we find something similar to the following:

Library Animals {
CoClass CDog {

[default] interface _CDog;
interface _Object;

};

interface _CDog : IDispatch {
HRESULT ToString([out, retval] BSTR* pRetVal);
HRESULT Equals([in] VARIANT obj,

[out, retval] VARIANT_BOOL* pRetVal);
HRESULT GetHashCode([out, retval] long* pRetVal);

34 Part I: Interoperating with COM

054835-2 Ch03.F 8/31/01 8:09 AM Page 34

HRESULT GetType([out, retval] _Type** pRetVal);
HRESULT Bark();

}
}

Let’s start off by examining the CoClass definition of CDog. Notice there are two
interfaces: _CDog, and _Object. .NET supports single inheritance by allowing one
object to inherit members of another class. In .NET, each class inherits from
System.Object either directly or indirectly. When the Assembly Registration Tool
reads an assembly, it is able to extract the inheritance hierarchy for each public
class. Members of each class in the inheritance tree are added as members of the
class being evaluated. So when the Assembly Registration Tool sees that CDog
inherits from System.Object, it adds System.Object’s members to CDog.

As you can see, many of the names in the .NET namespace map directly into the
type library. For instance, the namespace Animals maps directly to the library
name. In addition, the class name CDog maps directly to the CDog CoClass. There are
circumstances where a type name in an assembly cannot map directly into the type
library. In .NET, a type name can be reused throughout multiple namespaces. The
class CDog can exist in the Animals namespace and in the Mammals namespace. To
understand how the Assembly Registration Tool handles this naming conflict, let’s
modify our assembly to contain the Mammals namespace.

// Assembly file name: Animal.dll
using System;
namespace Animals {

public class CDog {
public void Bark() {

Console.WriteLine(“Woof Woof”);
}

}
namespace Mammals {

public class CDog {
public void RollOver(){

Console.WriteLine(“Rolling Over”);
}

}
}

If we repeat our previous step, we get something similar to the following type
library:

Library Animals {
CoClass CDog {

[default] interface _CDog;
interface _Object;

Chapter 3: Consuming .Net Components from COM 35

054835-2 Ch03.F 8/31/01 8:09 AM Page 35

};
interface CDog : IDispatch {

// .. Declaration of System.Object’s members
HRESULT Bark();

};
CoClass CDog_2 {

[default] interface _CDog_2;
interface _Object;

};
interface _CDog_2 : IDispatch {

// .. Declaration of System.Object’s members
HRESULT RollOver();

}
}

Notice that the Assembly Registration tool has added an underscore and 2 to the
second instance of CDog in the assembly. Because Animal.CDog is defined first in
the source code, it gets to keep its original name in the type library. Subsequent
uses of the CDog name are suffixed with an underscore and a running index num-
ber. If CDog were an interface instead of a class, the same rules would apply. Be
forewarned, however, that this naming convention could change in future releases
of the framework.

There are a few limitations when converting assemblies to type libraries. For
instance, only public classes and interfaces can be exported. In addition, any public
class you wish to export must implement a constructor with no parameters. Any
static members such as fields and methods cannot be exported. If you wish to pro-
vide access to a static member, you must wrap it in an instance-level method call.

If you have classes that meet these criteria and you still do not want to make

them available to COM, you can use the System.Runtime.
InteropServices.ComVisible attribute. The ComVisible attribute

can be used to hide assemblies, classes, and interfaces from COM. Although

this attribute takes a true or false value, it cannot be used to make an other-

wise invisible type available to COM. Types that are marked private, internal,

or those that do not have a default constructor (no parameters) cannot be

made visible to COM, regardless of the value of the ComVisible attribute.

Assemblies contain more than just the definition of their types. As you have
learned from Chapter 1, assemblies contain a four-part version number, a simple
string name, the originator’s public key, and, optionally, a strong name if the
assembly is shared among multiple applications. When an assembly is converted to
a type library, a unique TypeLib ID must be created for COM clients to find the type

36 Part I: Interoperating with COM

054835-2 Ch03.F 8/31/01 8:09 AM Page 36

library in the registry. During the conversion process, an assembly’s simple name
and originator key are used to generate the new TypeLib ID. A given simple
name originator key always generates the same TypeLib ID.

Type libraries also contain version numbers. An assembly’s major and minor
version numbers are converted to the type library’s major and minor version num-
bers. Build and revision numbers from an assembly are discarded. If an assembly
does not contain a version number, the Assembly Registration Tool and the TlbExp
utility use 0.1 for the type library version number.

Registering Assemblies with COM
When the Assembly Registration Tool registers an assembly with COM, it makes all
the necessary entries for classes and the type library into the Windows registry. The
/regfile switch of the Assembly Registration Tool is used to save the resulting
registry entries to a file. This file can be copied to other machines that need the
assembly registered with COM.

Let’s run our CDog class through the Assembly Registration Tool with the
/regfile switch turned on.

// Assembly file name: Animal.dll
using System;

namespace Animals {
public class CDog {
public void Bark() {

Console.WriteLine(“Woof Woof”);
}

}
}

Using the CDog class defined in the preceding code, the Assembly Registration
Tool yields the following registry file. Note that when this switch is used the
registry entries are not made to the Windows registry.

REGEDIT4

[HKEY_CLASSES_ROOT\Animals.CDog]
@=”Animals.CDog”

[HKEY_CLASSES_ROOT\Animals.CDog\CLSID]
@=”{AC480224-1FA7-3047-AE40-CCDD09CDC84E}”

[HKEY_CLASSES_ROOT\CLSID\{AC480224-1FA7-3047-AE40-CCDD09CDC84E}]
@=”Animals.CDog”

Chapter 3: Consuming .Net Components from COM 37

054835-2 Ch03.F 8/31/01 8:09 AM Page 37

[HKEY_CLASSES_ROOT\CLSID\{AC480224-1FA7-3047-AE40-CCDD09CDC84E}\InprocServer32]
@=”C:\WINNT\System32\MSCorEE.dll”
“ThreadingModel”=”Both”
“Class”=”Animals.CDog”
“Assembly”=”animal, Ver=0.0.0.0, Loc=”””

[HKEY_CLASSES_ROOT\CLSID\{AC480224-1FA7-3047-AE40-CCDD09CDC84E}\ProgID]
@=”Animals.CDog”

[HKEY_CLASSES_ROOT\CLSID\{AC480224-1FA7-3047-AE40-CCDD09CDC84E}\Implemented
Categories\{62C8FE65-4EBB-45e7-B440-6E39B2CDBF29}]

The ProgID for the class follows the format of namespace.class_name. The
Assembly Registration Tool registers the CDog class as Animals.CDog.

In the registry file shown previously, I have highlighted the most interesting key
of all. We can learn a lot from this particular registry entry. First, the COM
InprocServer32 is not animal.dll as you may expect, but it is MSCorEE.dll. This
dll provides a level of indirection that allows COM clients to talk to .NET. This dll
implements the COM Callable Wrapper discussed in the next section.

The threading model is defined as “Both.” This allows our .NET class to run in
either a single threaded apartment or a multi-threaded apartment — depending on
the apartment model the unmanaged client is running in.

Finally, notice a brand new registry entry for the assembly. The Assembly reg-
istry key tells MSCorEE.dll which assembly is implementing the class the ProgID
identifies. The assembly’s version and locale is also present in the registry. This
information is passed to the .NET assembly resolver at runtime to ensure that the
proper assembly is located.

COM Callable Wrapper
The counterpart to the Runtime Callable Wrapper is the COM Callable Wrapper
(CCW). As you see in the previous section, when a .NET assembly is made available
to COM via the Assembly Registration Tool, MSCorEE.dll is registered as the COM
server. This dll implements the CCW that COM clients call when they use .NET
classes. Unlike the RCW, the CCW is unmanaged code running outside the .NET
runtime. The CCW has the following responsibilities:

� preserving .NET object identity

� maintaining .NET object lifetime

� proxying explicit interfaces

� providing standard COM interfaces on demand

� marshalling method calls between runtimes

38 Part I: Interoperating with COM

054835-2 Ch03.F 8/31/01 8:09 AM Page 38

Preserving Object Identity
The CCW ensures that there is always a one- to-one relationship between a .NET
class and the CCW acting as its wrapper. For instance, when a managed method call
returns another class instance (either from a return value or an out parameter), the
runtime ensures that a new CCW instance is created. Conversely, when a COM
client casts its reference to an interface the underlying managed class supports, the
CCW ensures that the interface is supported by the managed class and that a new
instance of the managed class is not created just to serve the requested interface.

Maintaining Object Lifetime
When a COM client receives a reference to a COM object, it calls IUnknown->AddRef
in order to increment the count on the object. Conversely, when it releases a refer-
ence to an object, it calls IUnknown->Release. The CCW provides an IUnknown
interface for COM clients to call these methods. Because .NET classes do not imple-
ment a reference count, the CCW maintains this count and releases the .NET class
when its internal reference count reaches zero. Once the CCW releases its reference
to the .NET class, the class becomes eligible for garbage collection, assuming there
are no other managed references to the class.

It is possible to leak memory from a .NET class a CCW is wrapping. If the

unmanaged process using the .NET class via the CCW shuts down before a

Garbage Collection occurs, the managed class is not freed from memory. To

keep this problem from happening, the unmanaged process must call the

function CoEEShutDown. This function is part of the unmanaged API the

.NET runtime exposes. The .NET runtime performs one last Garbage

Collection once this function is called. More information about this API can

be found in the Tool Developers Guide section of the Visual Studio .NET

documentation. The methods in this API can be consumed from any

programming language that is capable of calling Windows API functions.

Standard COM Interfaces: IUnknown & IDispatch
IUnknown and IDispatch are two well-known interfaces in the COM world, but
they have no meaning in the .NET world. The CCW is responsible for providing
these interfaces to COM on demand. IDispatch is perhaps the most heavily used
interface in COM. Automation clients such as Active Server Pages, Visual Basic
(unmanaged versions), and Visual Basic for Applications use IDispatch exclu-
sively. IDispatch exposes methods that allow clients to query type information
from the type library at runtime. If your .NET application does not provide a
pre-built type library, the .NET runtime may create one on the fly. This process can

Chapter 3: Consuming .Net Components from COM 39

054835-2 Ch03.F 8/31/01 8:09 AM Page 39

be rather time-consuming and can considerably slow down your application. It is
wise to ship a type library with your application for this reason.

If you know ahead of time that an automation client will never call your .NET
class, you can suppress support for the IDispatch interface. System.Runtime.
InteropServices namespace provides NoIDispatch, an attribute that suppresses
support for the IDispatch interface. If COM clients do query for this interface
through IUnknown->QueryInterface, the E_NOINTERFACE HRESULT is returned.

Proxying Interfaces
Classes in .NET can implement any number of interfaces. When a COM client casts
its CoClass instance of the .NET class to one of the explicitly implemented inter-
faces, the CCW creates a VTable containing the methods of that interface. Usually
in COM, a VTable contains pointers to the functions the interface implements.
Instead, the CCW places stub functions in the VTable rather than the function
pointers. These stubs are responsible for marshalling method calls between COM
and .NET. The stub functions are described in more detail in the “Activation
Lifecycle” section that follows.

VTables (Virtual Function Tables) define a block of memory that contains

pointers to functions the interface defines.When a client obtains a reference

to an interface, be it a specific interface or the class’s default interface, it

receives a pointer to the VTable.

Marshalling Method Calls
Once a COM client has obtained a reference to one of the class’s interfaces, it begins
to call methods on that interface. The client makes its calls against stubs provided
in the interface’s VTable. These stubs have several responsibilities:

� managing the transition between managed and unmanaged code

� converting data types between the two runtimes

� changing .NET method return values to out, retval parameters

� converting .NET exceptions to HRESULTs

It is possible to prevent the CCW from marshalling method calls between the
two runtimes. The System.Runtime.InteropServices.PreserveSigAttribute
attribute is used to maintain the managed method signature when it is called from
a COM client. For example, a managed method that has the following signature:

long SomeMethod(string sParameter);

40 Part I: Interoperating with COM

054835-2 Ch03.F 8/31/01 8:09 AM Page 40

is converted to the type library in the following format:

HRESULT SomeMethod([in] BSTR sParameter,
[out, retval] long* pRetVal);

When this attribute is applied, the method retains the original signature inside
the type library:

long SomeMethod(string sParameter);

The second point above raises an interesting issue. Converting data types
involves marshalling. The marshalling process acts similar to the marshalling
process described in the previous chapter, except it works in reverse. The CCW con-
verts .NET data types to their corresponding COM data types when parameters are
passed to methods and returned from methods. Basic data types like strings and
integers work well in this situation. However, other managed classes can also be
returned from method calls. Managed classes returned from method calls do not
necessarily have to be registered as COM components. The CCW will convert a
managed class to a suitable COM component for the COM client.

Activation Lifecycle
Let’s firm up these concepts by walking through each phase that must occur when
a COM client loads a class and begins to call methods. Before a COM client can
even get an instance of a managed class, it must find the COM dll, load it, and get
access to its class factory. The process for doing this is as follows:

1. Query the Windows Registry for the CLSID, given a specific ProgID.
(Remember for .NET classes the ProgId is the namespace.classname.)

2. Given the CLSID, the client queries the registry for the CLSID Key. The
section “Registering Assemblies with COM” shows what this key looks like
for a .NET class.

3. The client calls the COM API DllGetClassObject, passing in the CLSID,
to get a reference to the class’s ClassFactory.

Step 3 is where things start to get interesting. MSCorEE.dll is the COM server for
all .NET classes – including COM+ classes. When a COM client requests a class fac-
tory, MSCorEE.dll queries the .NET Class Loader to see if that class has been loaded.
If the class has been loaded, a class factory is returned to the client. The CCW is
responsible for creating this class factory and returning it to the client. However, if
the class is not loaded, the CCW looks at the assembly key in the registry to deter-
mine the name, version, and locale of the assembly. This information is passed off to
the .NET assembly resolver. At this point, the assembly is located through the normal
assembly location algorithm. All of the versioning rules, config-file overrides, and
location rules we discussed in Chapter 1 are applied at this point. Remember, unless

Chapter 3: Consuming .Net Components from COM 41

054835-2 Ch03.F 8/31/01 8:09 AM Page 41

the assembly is in the same directory, in a subdirectory, or in the Global Assembly
Cache, the assembly resolver is not able to find the assembly.

Once found, the assembly is passed back to the Class Loader. The Class Loader is
responsible for loading the assembly and determining if the assembly implements
the class (by reading its metadata). Assuming the class is found within the assem-
bly, the CCW creates a class factory and returns it to the calling client.

The class factory returned to the client is a standard COM class factory on which
the client can call IClassFactory.CreateInstance() to get an instance of the
CCW that wraps the underlying .NET class. IClassFactory.CreateInstance()
takes three parameters:

� a pointer to IUnknown

� an interface ID (GUID defined in the type library)

� a void pointer used to hold the reference to the object

When the client passes in the IUnknown pointer, the CCW compares the values
of the pointer to the instance of the class for which the class factory has been
returned. By doing this, the CCW preserves the identity of the .NET class.

When CreateInstance() is called, the CCW returns the interface to the client
and sets up the VTable for the interface’s methods. Figure 3-1 shows a VTable for
an interface called IList that defines methods for MoveFirst, MoveLast, and Goto.

42 Part I: Interoperating with COM

Class Factories
Class factories are special kinds of COM classes responsible for creating instances of
other COM classes. For the most part, each class or object in COM has a corresponding
class factory responsible for creating instances of itself. A class factory is responsible
for creating only one instance of the class it represents. Using class factories to
control the creation process of classes has several advantages over simply making a
call to the COM API, CoCreateInstance:

� The author of the COM class can use his or her knowledge of the class to
improve efficiency of the class factory and thus improve the creation process.

� The class-factory model provides a level of indirection that can be used to
catch errors during the creation process.

� The class factory simplifies the creation of classes for COM’s clients.

Class factories also provide an efficient way to produce multiple instances of a class.
In a multi-user environment, such as a Web server using COM+ components, class
factories are used to create instances of COM+ objects as user requests are received.
In fact, COM+ caches instances of class factories to improve the object-creation times
of COM+ objects.

054835-2 Ch03.F 8/31/01 8:09 AM Page 42

Figure 3-1: VTable for Interface IList

When the client calls MoveFirst and MoveLast, the CCW manages the transition
between managed and unmanaged code and catches any exceptions the methods
throw. For instance, the class MoveLast may throw an exception if it is called
after the client has reached the last position in the list. When this exception is
thrown, the CCW converts the exception to a HRESULT.

Design Guidelines for .NET Components
We have hit upon several concepts for designing efficient .NET classes to be used
with COM. This may not have been entirely obvious, so let’s hit upon a few of the
key issues.

1. Minimize trips across the Interop boundary: as you can see, a lot of
low-level COM and .NET interaction is done automatically for you. COM
Interop in .NET provides you with a lot of flexibility. But this flexibility
comes at the price of performance. When designing your component, try to
minimize the trips your clients have to take across the Interop boundary.

2. Adopt a message-passing architecture: one way to minimize trips across
the Interop boundary is to implement a message-passing format. Instead
of following an object-oriented approach of setting properties, and calling
methods, try passing multiple parameters into a single method call. As an
option, you can pass in an XML string containing all of the method para-
meters as well. This type of approach sets you up well if you want to use a
stateless programming model such as in COM+ or if you want to call your
object from a remote machine using .NET Remoting.

COM client

pointer for
MoveFirst()

pointer for
MoveLast()

pointer for
Goto(int i)

VTable for Interface IList

stub for
MoveFirst()

stub for
MoveLast()

stub for
Goto(int i)

COM Callable Wrapper

IList.MoveFirst()

IList.MoveLast()

IList.Goto(int i)

.Net Runtime
public class CTable : IList

Chapter 3: Consuming .Net Components from COM 43

054835-2 Ch03.F 8/31/01 8:09 AM Page 43

3. Provide type libraries: the IDispatch interface consumes type libraries
when IDispatch->GetTypeInfo and IDispatch->GetTypeInfoCount are
called. As we mentioned previously, the .NET runtime can generate type
libraries on the fly for these method calls by examining an assembly’s
metadata. This process is extremely expensive in terms of performance.
You can gain a big performance win by generating and deploying your
own type libraries.

4. Close and Dispose: differences between object lifetime in the two environ-
ments can cause some curious problems. Objects that hold onto expensive
resources (file handles, database connections, and so on) should implement
either a Close or Dispose method that allows the resources to be freed
once the client is finished with them. Do not rely on Garbage Collection
and finalizers to clean up these resources.

5. Stay with standard data types: “standard” data types such as integers and
floating-point types do not need to be marshalled across the Interop
boundary. Other, more complex types such as strings and dates are
marshalled. Also, keep in mind that a CCW or RCW must be created for
methods that return references (as a return value or out parameter) to other
objects across the boundary.

Summary
In this chapter, we have discussed how .NET assemblies are converted to COM type
libraries by using the Assembly Registration Tool. The Assembly Registration Tool
is responsible not only for converting types in an assembly to types in a type
library but also for registering the new type library in the Windows registry. Also
remember that a new value, Assembly, is created in the InprocServer32 key. The
Assembly sub-key is passed onto the assembly resolver to locate the assembly the
client is seeking. We have seen how the CCW plays an important role during
method-marshalling between COM and .NET.

This chapter wraps up the first part of the book, Interoperating with COM. This
part of the book is intended to provide you with the proper grounding you need as
you go forward and learn to implement COM+ services in your .NET applications.
The next part of the book teaches you to leverage COM+ services such as distributed
transactions, object pooling, and queued components from your .NET applications.

44 Part I: Interoperating with COM

054835-2 Ch03.F 8/31/01 8:09 AM Page 44

COM+ Core Services
CHAPTER 4

Transactions

CHAPTER 5
Security

CHAPTER 6
Events

CHAPTER 7
Object Pooling

CHAPTER 8
Queued Components

Part II

064835-2 Pt2.F 8/31/01 8:09 AM Page 45

064835-2 Pt2.F 8/31/01 8:09 AM Page 46

Chapter 4

Transactions
IN THIS CHAPTER

� ACID requirements

� Logical transaction lifecycle

� Physical transaction lifecycle

� Writing transactional components in C#

TRANSACTIONS are one of the cornerstone services of COM+. In fact, the benefits
COM+ transactions provide applications are among the most driving factors
in developers’ decisions to use COM+. COM+ transactions are so compelling to
developers because they provide the glue or plumbing necessary to tie together
transactional services such as Oracle and SQL Server databases, CICS applications,
and message queues in a single transaction. This type of plumbing code is difficult
to design and develop correctly.

In this chapter, you learn some of the basic rules of transaction processing, such
as ACID rules. From there, you learn how COM+ provides services such as the
Two-Phase Commit protocol and Automatic Transaction Enlistment to help you
follow those basic transaction-processing rules. Once you have a firm grasp of the
fundamentals, you write a transactional component by using C# and the .NET
ServicedComponent class. Along the way, you see some pitfalls and other things to
avoid when developing components in C#.

ACID Requirements
Any transaction, whether it is a COM+ transaction or not, must have four basic
characteristics to be a transactional system. These rules may seem academic and
not worth your attention, but a solid understanding of them helps you understand
why COM+ does certain things. A transaction must be: atomic, consistent, isolated,
and durable.

Atomic
A transaction represents a unit of work that either completely succeeds or completely
fails. A transaction, particularly a COM+ transaction, may have many subtasks to
perform in order to execute. For instance, an order-processing application may need

47

074835-2 Ch04.F 8/31/01 8:12 AM Page 47

to validate data from a customer, decrement the customer’s account from one data-
base, and submit the order to another database or to a message queue. Suppose the
customer does not have enough credit for the purchase; you don’t not want the order
to be submitted in that case, correct? The atomic rule states that if you decide to abort
the transaction because of a lack of customer credit, the order is not submitted. In
other words, all the subtasks of a transaction must complete successfully or none of
them do.

Consistent
The consistent rule states that a transaction must start with data in a consistent state
and end with data in a consistent state. Consider a scenario where your application is
updating two databases. If the first update is successful and temporarily commits data
but the second update fails, the first update must rollback its data to the state it was
in before the transaction started. By undoing any temporary changes, a transactional
system is able to maintain the consistency of the data during an abort. Conversely, if
the transaction succeeds, the committed data must not violate any of the business
rules surrounding the data.Consistency is something you need to consider in your
application design. For instance, if you have a decimal field in your data that con-
tains three decimal places, you should not round the field to two decimal places dur-
ing the transaction. Consistency is supported in COM+ only to the extent that data
changes can be committed and rolled back. Respecting business rules is up to you.

Isolated
The isolated rule states that transactions occurring simultaneously must not see
each other’s work. If transaction A is updating a database table and transaction
B attempts to query the same table, transaction B must not see the data transaction
A is updating until A either commits or aborts. Usually, the isolated rule leads to
some pretty hefty locks on database tables, particularly in COM+.

Table locks restrict the level at which another application can view data cur-

rently being used by another application.Table locks essentially come in two

flavors: read locks and write locks. Read locks allow other programs to read

data from the table, but do not allow another program to write data to the

table.This allows the application that established the lock to get a clean read

from the table without seeing another application’s partially finished work.

Read locks are usually used when an application needs to select data from a

table. Write locks prevent other applications from reading or writing to the

table.Write locks are more restrictive than read locks since they put a greater

limitation on the types of activities that can be performed with the table.

Write locks are generally used when an application needs to update or

insert data into the table.

48 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 48

The level of locking a database applies inside of a transaction is the isolation
level. Isolation levels can be adjusted to improve performance by decreasing the
level of isolation, or they can be adjusted to increase the level of isolation. If
decreasing the isolation level improves performance, and increasing the isolation
level decreases performance, why would anyone ever want to increase the isolation
level? It turns out that increasing the isolation level reduces the chance that
another application can modify data while you are still in the middle of a transac-
tion. There are four possible levels of isolation inside of a transaction. Table 4-1
lists and describes each of the possible isolation levels.

TABLE 4-1 ISOLATION LEVELS

Isolation Level Description

Read uncommitted This is the lowest isolation level (best performer). This will allow
you to read a table that is currently being updated by another
application. You run the risk of seeing data that has not been
completely updated. This is known as a dirty read.

Read committed This is a step higher than read uncommitted. An application using
this level will wait until any write locks are released. This is a
slightly slower performer since the application must wait on other
applications to release their locks.

Repeatable Read This level prevents other applications from establishing write
locks. Other applications will be able to establish a read lock, but
will not be able to establish a write lock.

Serializable This level establishes a read or write lock (depending on the task)
over the entire range of rows affected by the transaction. For
example, if the application is doing a select * from a table,
then a write lock will be established on all the rows in the table.

A COM+ transaction that runs against Microsoft SQL Server applies an isolation
level of serializable. This isolation level is the most restrictive, and it usually leads
to table-level locks. Unfortunately in COM+, on Windows 2000 the isolation level
is not configurable.

Durable
The durable rule states that once a transaction has been committed, its data must be
stored in a permanent state that can survive a power outage. If the computer run-
ning the transaction should crash and restart immediately after committing the

Chapter 4: Transactions 49

074835-2 Ch04.F 8/31/01 8:12 AM Page 49

transaction, then the data involved in the transaction should be stored in a perma-
nent location. Put another way, once the transaction commits, the data should be
stored in the database and saved to disk by the database engine. Also, for transac-
tions in progress, durability requires that transactions can pick up where they left
off after a system interruption such as a power outage. Usually, logs are updated as
a transaction is taking place that allows a transaction to be rolled back or restarted
after an interruption. If a system interruption occurs during the middle of a trans-
action, then these log files will be read to determine whether the transaction should
be committed or aborted. Transaction managers are responsible for maintaining
these types of log files and determining if their part of the transaction should be
committed or aborted. Transaction managers are covered in the Physical
Transaction Lifecycle section later in this chapter.

Understanding the COM+
Transaction Process
As I mention in the introduction to this chapter, COM+ provides the glue that makes
transactional components work. The glue – or underlying transaction architecture –
is not something a typical component developer needs to be terribly concerned with
on a daily basis. However, a good understanding of how the underlying architecture
works helps you design your transactional components and applications.

In COM+, a transaction is divided into two parts: the logical transaction and the
underlying physical transaction. Transactional components run inside the logical
transaction, which the COM+ runtime hosts. Physical transactions, however, are
initiated based upon actions taken inside the logical transaction. Take a look at
each of these parts in detail to see how they interoperate to form the complete
COM+ transaction.

Logical Transaction Lifecycle
A logical transaction starts when the client makes its first method call against a
transactional component. Your components run inside the logical transaction and
interact with it through their contexts. The logical transaction drives the underlying
physical transaction. Let’s break down the lifecycle of the logical transaction to see
how this works.

In Chapter 2, I briefly introduce contexts. I explain contexts in relation to apart-
ments in that each apartment may be broken down into multiple contexts. Contexts
are of particular importance to transactional components. Each component in
COM+ gets a context associated with it when it is created. When a client instanti-
ates a transactional component, COM+ looks to see if the client is already partici-
pating in a transaction. If the client is running in a transaction (a client can be
another transactional component) and if the component supports running in
another’s transaction, the component is created, and it inherits the context of the

50 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 50

client. Think of the context as a sort of property bag that contains runtime-relative
information that COM+ and the component use to talk to each other.

Unmanaged components – those written with Visual Basic 6, for example –
manipulate the context through properties and methods of the ObjectContext.
.NET components use a similar object called ContextUtil. ContextUtil resides in
the System.EnterpriseServices namespace. If you compare the two APIs, you
notice many similar methods and properties.

DECLARATIVE TRANSACTIONS
COM+ supports declarative transactions. Declarative transactions allow the devel-
oper to manipulate a component’s transactional characteristics through attributes.
The transaction attribute for a component is stored in the COM+ catalog. You can
think of the COM+ catalog as a small database that stores all the information COM+
needs to instantiate and run your component properly. COM+ supports five settings
for the transactional attribute:

� Disabled: Components never run inside a COM+ transaction. Components
with this attribute are nontransactional.

� Not Supported: This is the default value for components running in COM+.
This attribute tells the runtime that the component does not support trans-
actions. If the component votes on the transaction (see “Casting the Vote”
that follows) by calling ObjectContext.SetComplete or ObjectContext.
SetAbort, these votes do not count toward the outcome of the transaction.
Components that have this attribute are nontransactional.

� Supported: A component that has this attribute can be created within the
client’s transaction. If the client is not running in a transaction, the com-
ponent does not run in a transaction. Components that have this attribute
are transactional.

� Required: This component is required to run in a transaction. The compo-
nent runs in the caller’s transaction if one exists. If the caller is not running
in a transaction, a new transaction is created.

� RequiresNew: The component must always be created in a new transaction,
regardless of the caller’s transaction status.

Normally, these attributes are specified in a component’s type library. When a
component is installed into a COM+ library or server application, the attribute set-
ting is read from the type library and applied to the component. Afterward, these
settings can be changed at any time. When you write components with C# or with
any other language that supports the CLR, these attributes are inserted directly into
the source code through the System.EnterpriseServices.Transaction attribute.
When the component is compiled, these attributes show up in the assembly’s meta-
data. As you see later in this chapter, this attribute is read from the metadata and
applied to the component when it is installed into a COM+ application.

Chapter 4: Transactions 51

074835-2 Ch04.F 8/31/01 8:12 AM Page 51

JUST IN TIME ACTIVATION
I state previously that the logical transaction starts when the caller makes its first
method call on a transactional component. The logical transaction starts when the
component is created. Both statements are true due to a concept called Just In Time
Activation (JITA). JITA can be either enabled or disabled for a component. However,
for a transactional component, JITA is required. In fact, when you choose a trans-
action attribute of Supported, Required, or RequiresNew, this attribute is checked
and disabled for you. Refer to Figure 4-1 to see what this looks like in the
Component Services Explorer.

Figure 4-1: JITA is required for a transactional component.

When the client makes a creation request, COM+ intercepts the call and returns
a reference of the component to the client without creating the component. As soon
as the client calls a method on the component, COM+ activates the component and
calls the method. Assuming the component sets its done bit to true, the component
is destroyed once the method returns.

The done bit is a flag in the context that the component uses to tell COM+ when
its work is done. When a method returns, COM+ examines the component’s done
bit to determine if the component should be destroyed. By default, this setting is set
to false when a method is first called. In C#, ContextUtil.SetComplete and
ContextUtil.SetAbort both set this done bit to true. Conversely, ContextUtil.
EnableCommit and Context.DisableCommit set this bit to false. If you have
written COM+ components using Visual Basic 6, then these methods of the
ContextUtil class should look familiar. The ObjectContext component used in
Visual Basic 6 supports the same set of methods, which incidentally perform the
same functions as those from the ContextUtil class.

COM+ supports an attribute called autodone. This attribute is applied to a
method by using the Component Services Explorer. The Auto-Done attribute

JIT enabled for transactional
components

52 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 52

changes the done bit’s default value from false to true when a method is first called.
The .NET Framework provides this support through the AutoComplete attribute,
which you encounter later in the chapter. Figure 4-2 shows a method in the
Component Services Explorer that has Auto-Done turned on.

Figure 4-2: Auto-Done attribute turned on for a component’s method

The .NET Framework supports the COM+ AutoDone attribute through the
AutoComplete attribute in the System.EnterpriseServices namespace. This
attribute is applied at the method level and is automatically set in the COM+ catalog
when a component is installed.

The JITA model is well suited for transactional components. Transactional com-
ponents work best when each method call does an atomic unit of work, then exits
and is destroyed. If COM+ is allowed to destroy the object after each small unit of
work, there is no chance the component’s data can corrupt the transaction later.
Without JITA in this model, a client has to create the object after each method call.
As you might imagine, this can become rather tedious. Because JITA creates the
object each time on the client’s behalf, the client does not need to worry whether its
reference to the component is still valid.

CASTING THE VOTE
As you may have guessed, each component gets a vote in the overall outcome of
the transaction. The vote is cast by setting the “consistent” flag on the context to
true or false. Methods from the ContextUtil object such as SetComplete and
EnableCommit set this bit to true. The SetAbort and DisableCommit methods set
this bit to false. If the component is in a consistent state, it is able to commit the
transaction, so its vote is to commit. Conversely, if the object is in an inconsistent
state, the component cannot commit its data, so it votes to abort the transaction.
Initially, this bit is set to true.

Auto-Done attribute enabled
for method GetAuthors

Chapter 4: Transactions 53

074835-2 Ch04.F 8/31/01 8:12 AM Page 53

The combination of the done bit and the consistent bit for the logical transaction
are used to decide whether to commit or abort. Setting the done bit to true forces
COM+ to examine the component’s consistency bit. If the done bit is true and the
consistent bit is true, the object’s final vote is to commit the transaction. If the done
bit is true and the consistent bit it false, the transaction aborts regardless of any
other object’s vote in the transaction.

In addition to JITA, synchronization is required for transactional compo-

nents. Synchronization keeps two clients from calling a method on the same

component at the same time. Synchronization is important for transactional

components; without synchronization, one client can enter a component

another client is using.This violates the ACID rules of atomicity and isolation.

UNDERSTANDING A TRANSACTION’S SCOPE
Developing transactional components this way is deceptively simple. All you need
to do is write your data access logic and business logic, call SetAbort if there is a
problem, and otherwise call SetComplete. The complexity is understanding the
scope of the transaction. I have been burned by not completely understanding the
scope of my transactional components. To understand the scope of a logical trans-
action, walk through an example.

Assume you have a GUI application that your end user is using to enter sales
orders. Typically, sales orders consist of some header information such as the cus-
tomer’s name, account number, and so on, as well as line-item data. When the user
submits the sales order, the GUI application creates your remote transactional com-
ponent and begins to call methods on the component to submit the sales order to
the database. Remember that each method call results in four actions:

� COM+ activates the component.

� The component’s method is called.

� The component votes on the transaction.

� COM+ destroys the object.

Here’s the tricky part. If the GUI client is responsible for calling methods on the
component, a new transaction starts for each method call because the component is
created and destroyed each time. If the first method call succeeds and the second
fails, the sales order could be left in an inconsistent state in the database.

There are two work arounds for this problem. The first solution is to use the
TransactionContext object. This object allows nontransactional clients, such as
the GUI application mentioned previously, to control or coordinate the transaction.
TransactionContext has methods to commit or abort the transaction and to create

54 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 54

other objects that must participate in the transaction. However, this approach has a
couple of drawbacks:

� It requires the client to have the Transaction Context library installed.

� Nontransactional components do not benefit from the automatic transac-
tion services of COM+. If nontransactional components fail, the transac-
tion may or may not be aborted.

The second solution is to create another transactional component that consumes
other subtransactional components. This model is preferred because all the work of
a transaction can occur within the protection of the COM+ runtime. If we modify
the previous example, the GUI client can call one method on the coordinating
component and can pass it all the sales-order data at one time. The coordinating
component can be responsible for instantiating subcomponents and calling meth-
ods to do the database work. This is also a nice way to separate business logic and
validation logic from database-access logic. The coordinating component can
implement the application’s business rules. Assuming the business rules are met,
data can be entered through the subcomponents. If you pass all the data into the
coordinating component in one method call, you get the added bonus of reducing
the number of network trips needed to complete your transaction.. Now, instead of
taking a network performance hit each time you make a method call, you need to
take only one hit for the entire transaction.

In this scenario, the coordinating component has a Requires or RequiresNew
transaction attribute. The coordinating component acts as the root component
of the transaction. When the client calls the first method on an instance of this
component, the transaction begins. Once the component has set its done bit to true,
the logical transaction ends.

Physical Transaction Lifecycle
In this section, you see what happens behind the scenes during the logical transac-
tion and what happens to the physical resources involved in the transaction after
the logical transaction ends.

AUTOMATIC TRANSACTION ENLISTMENT
The physical transaction begins when a transactional component makes a connec-
tion to a resource such as a database server or queue manager. In most cases, when
a transactional component requests a connection, the connection is dispensed from
a resource dispenser. Resource dispensers are responsible for maintaining a pool of
volatile resources such as database connections and threads. Resource dispensers
are also responsible for registering the connection with the local transaction man-
ager. The process of registering a connection with the transaction manager is
Automatic Transaction Enlistment. Figure 4-3 illustrates the process that occurs
when a transactional component requests one of these resources.

Chapter 4: Transactions 55

074835-2 Ch04.F 8/31/01 8:12 AM Page 55

Figure 4-3: Automatic Transaction Enlistment

For example, when a component uses ADO (or ADO.NET, for that matter) to open
a connection to a SQL Server database, the request goes to the resource dispenser
implemented inside the OLEDB framework. The resource dispenser looks at the con-
nection string passed to ADO to determine if that type of connection exists within
the resource dispenser’s pool. If a connection exists in the pool that has the same
connection string as the one being requested (for example, the same SQL Server,
driver, and user ID), the resource dispenser registers the connection with the local
transaction manager and returns the connection to the client. If the connection
does not exist, one is created and added to the pool.

TRANSACTION MANAGERS
Transaction managers are responsible for tracking activities between components
and resource managers. Resource managers manage data resources. Resource
managers know how to store data to the database and how to rollback their data in
the event of a transaction failure.

In a typical COM+ transaction, at least two machines are involved: one machine
the component runs on and another machine the database runs on. Each machine
must have a transaction manager to participate in a COM+ transaction. With
Microsoft products, the Distributed Transaction Coordinator service implements
transaction managers. Windows 2000 and SQL Server both ship with this service.

When the physical transaction starts, the transaction manager running on the
same machine as the component is designated as the coordinating transaction
manager. The coordinating transaction manager is responsible for initiating the
Two-Phase Commit protocol.

Machine #1

Local Transaction
ManagerCOM+ Runtime

Resource Dispenser
for MS SQL Server

connections

Transactional
Component

1. Request SQL Server
connection 2. Register

connection

3. Return connection

56 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 56

TWO-PHASE COMMIT PROTOCOL
Once all of the components in the logical transaction have finished their work and
each of their done bits is set to true, COM+ evaluates the transaction to determine if
the transaction should commit or abort. If each object’s consistent flag is set to true,
COM+ instructs the local transaction manager to commit the physical transaction.
The physical transaction is committed through the Two-Phase Commit protocol.

In phase I, the coordinating transaction manager asks the subordinate transac-
tion managers if they are ready to commit the transaction. Each subordinate trans-
action manager responds with a vote to commit or abort the transaction. A vote to
commit the transaction is a commitment to the coordinating transaction manager
indicating that the resources can be committed and made durable. Any vote the
transaction managers make to abort dooms the transaction.

In phase II, the coordinating transaction manager tallies the votes from the sub-
ordinates. If all subordinates have voted to commit, the coordinating transaction
manager sends an instruction to the subordinates to commit their resources. If the
transaction is to be aborted, the coordinating transaction manager sends an
instruction to the subordinates to rollback the transaction. During this phase, each
transaction manager instructs its local resource manager to commit or rollback the
transaction. Usually, resource managers maintain some sort of protected log file
throughout the transaction to provide this capability. Incidentally, this log allows a
transaction to restart in the event of system failure.

Figure 4-4 shows the process a coordinating transaction manager undergoes
during a Two-Phase Commit protocol.

Figure 4-4: Two-Phase Commit protocol

Machine #2: MS SQL Server

Subordinate
Transaction
Manager

Machine #3: MS Message Queue

Subordinate
Transaction
Manager

Machine #1

COM+ Runtime

Coordinating
Transaction Manager

Phase I
Are you prepared

to commit?

Phase I
Yes I am prepared

Phase I
No I am not

prepared

logical
transaction

ends and the
two-phase

commit
begins

Transactional
Component

Phase II: Abort transaction

Phase II: Abort transaction

Chapter 4: Transactions 57

074835-2 Ch04.F 8/31/01 8:12 AM Page 57

Writing Transactional Components
in C#
In this section, you write a transactional component that gets its transaction ID
from the ContextUtil class and logs it, along with its class name, into a database.
You use attributes that provide component support for synchronization, JITA, and
automatic completion of methods. In addition, you learn to register a class into a
COM+ application.

ServicedComponent Class
Throughout this book, you become intimately familiar with the ServicedComponent
class. It provides all of the COM+ services such as transactions, object pooling, and
automatic registration into COM+ applications. Any C# class that wishes to use
COM+ services must inherit from this class.

The ServicedComponent class exists in the System namespace. To get access to
this namespace from your code, implement a using System statement within your
code. Normally, you must make a reference to an assembly containing the name-
space you wish to use. The C# compiler is kind enough to include a reference for
each component or application automatically because the System namespace is so
frequently used.

.NET uses namespaces to organize classes, interfaces, methods, and so on

that implement similar or complementary functionality. For example, the

System.EnterpriseServices namespace implements many attributes,

interfaces, and classes you use to interoperate with COM+.

Defining a C# class that inherits from the ServicedComponent is relatively
simple.

Namespace ComTransaction {
using System;
using System.EnterpriseServices;
public class CRoot : ServicedComponent {
// add some methods here

}
}

The preceding code consists of four important tasks you must complete to make
a C# class a COM+ component:

58 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 58

� Defining the namespace — ComTransaction— for your component

� Declaring that you are using the System namespace via the using statement

� Making the class public

� Inheriting from the ServicedComponent class via : ServicedComponent

When this class is installed in a COM+ application, it is available for use from
managed and unmanaged components alike. Remember from Chapter 3 that a .NET
class must be public if you want to use it from an unmanaged COM-based client.

Attribute-based Programming
Next, add a method to the component (Listing 4-1).

Listing 4-1: Transactional Component

Namespace ComTransaction {
using System;
using System.Data.SQL;
using System.EnterpriseServices;

[Transaction(TransactionOption.Required)]
public class CRoot : ServicedComponent {

public void LogTransactionId() {
SQLConnection cnn = new

SQLConnection(“server=localhost;database=Transactions;uid=sa;pwd=”);
SQLCommand cmd = new SQLCommand();
cnn.Open();
cmd.ActiveConnection = cnn;
cmd.CommandText = “insert into TransactionId values(‘CWorker1’,

‘“ + ContextUtil.TransactionId + “‘)”;
cmd.ExecuteNonQuery();
cnn.Close();

}
}
}

We have added a method called LogTransactionId. This method creates a com-
mand and connection object and inserts the class name and the component’s transac-
tion ID into the database. The ContextUtil object is used to get the TransactionId
of the transaction. Also, we have declared this component to require a transaction
through the [Transaction(TransactionOption.Required)] attribute.

This attribute model is rather different from the COM+ attribute model.
Traditional unmanaged COM+ components do not store their attributes inside their

Chapter 4: Transactions 59

074835-2 Ch04.F 8/31/01 8:12 AM Page 59

code base. Attributes are stored in the COM+ catalog. This results in a dislocation of
the attributes from their corresponding components. The architects of the .NET
Framework have altered this model by storing the attributes directly inside the
code. At compile time, the attributes are converted into metadata and stored in the
assembly. This allows the component and its attributes to be in the same file.

Attributes can be applied at the assembly level. Specific to COM+, an assembly can
be attributed to affect the name of the COM+ application, the description, and whether
the classes are installed in a library or server application. The ApplicationName
attribute, the Description attribute, and the ApplicationActivation attribute are
all in the System.EnterpriseServices namespace and can be used to specify the
name of the COM+ application, its description, and the library or server setting,
respectively.

COM+ applications can be installed as either library applications or server

applications. Library applications run in the same process as their clients, but

server applications run in a host process outside of their client’s process.The

host process on Windows 2000 is dllhost.exe.

Installing a Class into a COM+ Application
Now that you have a complete transactional component that does some work, you
can install it in a COM+ application. There are two ways to install a C# class in a
COM+ application: using lazy registration at runtime or using the Regsvcs com-
mand-line tool that ships with the .NET Framework SDK.

Lazy registration eliminates the need to install a component manually into an
application. When a managed client creates an instance of a class that inherits from
ServicedComponent, the .NET runtime is intelligent enough to know that the class
must be registered with COM+. Of course, once the class is registered, the runtime
does not register it. Lazy registration allows you to skip the administrative burden
of creating COM+ applications and installing your components. There are, however,
several downsides to this feature:

� Lazy registration works only for managed clients. Because the class is not
registered ahead of time, an unmanaged client is not able to find the class
in the registry.

� Problems registering a component are not caught until runtime. If the
component fails to install, the client is out of luck.

� The process that registers the class must run under administrative privi-
leges to create the COM+ application. If the process is running in the
security context of the end user, the end user must have administrative
privileges.

60 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 60

The Regsvcs command-line tool registers a ServicedComponent class prior to
execution. It takes the name of an assembly file as input and creates the COM+
application. All of these ServicedComponent classes inside the assembly are
registered into the same COM+ application. The name of the assembly is used for
the name of the COM+ application unless it has been overridden using assembly-
level attributes. This tool has a number of arguments that can be passed in.
Table 4-2 contains some of the more useful arguments I have used in dealing with
this tool.

TABLE 4-2 USEFUL REGSVCS ARGUMENTS

Argument Description

/c Forces the COM+ application to be installed

/fc Looks for the application already installed in COM+

/reconfig Reconfigures the application and components. This is similar
to right-clicking the components folder in the Component
Service console and clicking Refresh.

The Regsvcs command-line tool and lazy registration both go through the same
four-step process to register the class into an application:

1. Load the assembly.

2. Generate and register a type library (similar to the process described in
Chapter 3).

3. Create the COM+ application.

4. Read the class metadata to apply the appropriate attributes.

JITA, Synchronization, and AutoComplete
You have learned how a class is declared as transactional through the Transaction
attribute. The way you declare JustInTimeActivation support, Synchronization
support, and AutoComplete support is not much different. All of these attributes
are in the System.EnterpriseServices namespace. In Listing 4-2, we attribute
the CRoot class and its method with these attributes.

Chapter 4: Transactions 61

074835-2 Ch04.F 8/31/01 8:12 AM Page 61

Listing 4-2: Transactional Component Using AutoComplete

Namespace ComTransaction {
using System;
using System.Data.SQL;
using System.EnterpriseServices;

[Transaction(TransactionOption.Required)]
[JustInTimeActivation(true)]
[Synchronization(SynchronizationOption.Required)]
public class CRoot : ServicedComponent {

[AutoComplete]
public void LogTransactionId() {
// database work here

}
}
}

The JustInTimeActivation attribute has two constructors. The default con-
structor (the one with no parameters) sets the JustInTimeActivation support to
true. The second parameter takes a boolean value that can enable or disable
JustInTimeActivation support. Notice that this attribute is applied on the class
level. The Synchronization attribute is similar to the JustInTimeActivation
attribute in that it has two parameters. The default constructor defaults the
Synchronization support to Required. The Synchronization attribute also
has a parameter that takes a SynchronizationOption enumeration that can be
used to set the support to any of the required levels: Disabled, Not Supported,
Supported, Required, or RequiresNew. Finally, the AutoComplete attribute is
applied at the method level as you would expect. If the method throws an
exception, the transaction aborts; otherwise, it votes to commit. When the
AutoComplete attribute is applied to a method, the AutoDone attribute is applied in
the COM+ catalog.

Developing the Root and Worker Objects
Previously in this chapter, I recommend a design pattern for transactional compo-
nents. The pattern involves a root object that coordinates the work of other sub-
components. The root object starts the transaction, and the subcomponents do the
work. Let’s extend our preceding example to use this design pattern. Listing 4-3
shows a namespace called ComTransaction that implements the root object and
two worker objects.

62 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 62

Listing 4-3: Root and Worker Classes

namespace ComTransaction
{
using System;
using System.Data.SQL;
using System.EnterpriseServices;

[Transaction(TransactionOption.Required)]
public class CRoot : ServicedComponent
{

public void LogTransactionId()
{

/* log class name and transaction id to database */

CWorker1 worker1 = new CWorker1();
CWorker2 worker2 = new CWorker2();
worker1.LogTransactionId();
worker2.LogTransactionId();

}
}

[Transaction(TransactionOption.Supported)]
public class CWorker1 : ServicedComponent
{

public void LogTransactionId()
{ /* log class name and transaction id to database */ }

}

[Transaction(TransactionOption.Supported)]
public class CWorker2 : ServicedComponent
{

public void LogTransactionId()
{ /* log class name and transaction id to database */ }

}
}

For the sake of clarity, I have omitted the database logic. First of all, notice that
on the two CWorker1 and CWorker2 objects, I have set the transaction support to
TransactionOption.Supported. This allows each worker object to participate in
the root’s transaction. The CRoot object uses these two classes as though they are
any other class from a namespace. Table 4-2 represents the output made to the
database after a client creates the CRoot object and calls its LogTransactionId
message.

Chapter 4: Transactions 63

074835-2 Ch04.F 8/31/01 8:12 AM Page 63

TABLE 4-2 DATABASE OUTPUT

ClassName TransactionId

CRoot FF208BBB-D785-4c59-9EA1-D3B6379822FB

CWorker1 FF208BBB-D785-4c59-9EA1-D3B6379822FB

CWorker2 FF208BBB-D785-4c59-9EA1-D3B6379822FB

Notice that the transaction IDs are identical for each object. This proves that
each object has indeed run in the same transaction.

Summary
In this chapter, you have learned how the ACID requirements (atomicity, consis-
tency, isolation, and durability) drive the transactional features of COM+ and the
underlying transaction managers. These requirements force the underlying archi-
tecture to lock resources while they are in use. Often, these locks can prove to be a
bottleneck for transactional applications if their impacts are not properly under-
stood. The basic rule of thumb when designing transactional components is to let
them do their work, vote, exit quickly, and release their resources.

You have learned some new concepts the .NET Framework has introduced.
Attribute-based programming is not new to the COM+ developer, but including attrib-
utes directly into source code is. This technique is a convenient way to keep the attrib-
utes and their components in one location. This technique also helps to simplify
deployment of your components. Finally, you have seen how the ServicedComponent
class is used in a C# application through inheritance. The combination of the
ServicedComponent class and attributes from the System.EnterpriseServices
namespace gives you COM+ support for your C# classes.

In Chapter 5, you learn how .NET provides support for the role-based security
feature of COM+.

64 Part II: COM+ Core Services

074835-2 Ch04.F 8/31/01 8:12 AM Page 64

Chapter 5

Security
IN THIS CHAPTER

� Understanding Windows security

� Authenticating over the wire

� Using COM+ security in C#

THE COM+ SECURITY MODEL provides mechanisms for both declarative security and
programmatic security. Declarative security allows a component to be configured at
the time it is deployed through the use of attributes recorded into the COM+
catalog. At runtime, these attributes affect the accessibility of the component, its
interfaces, and its methods. Programmatic security allows a component to control
its accessibility at runtime. In fact, declarative security and programmatic security
are interrelated. For a component to use programmatic security, the proper
attributes must be set in the COM+ catalog.

In Chapter 4, you encounter one of the central themes of the .NET development
model: attribute-based programming. You see that when you write transactional
components in C#, you specify, in code, the COM+ catalog settings you desire for
your components. This is a significant shift from the traditional way of developing
components for COM+. In the traditional development model, you develop your
component, install it into a COM+ application, and set the appropriate attributes.
The problem with this development model is that you rely typically on an adminis-
trator to set these attributes properly. The .NET development model puts this power
(and responsibility) into the hands of the developer. As you see in this chapter, .NET
Framework security attributes can be a powerful tool for setting every security-
related attribute inside the COM+ catalog. The attribute-based programming model
in .NET can help you ensure that your application’s security settings are correctly
configured since the security settings are read from the assembly’s metadata at the
time they are registered in the COM+ catalog.

In this chapter, you encounter various aspects of the COM+ security model:
authentication, authorization, and role-based security. Also, you see how the .NET
Framework attributes are used in C# to configure your components properly. Along
the way, you learn how authentication is performed over the wire from one
machine to another. However, before you explore these details, it is important to
understand how the security services provided in COM+ are leveraged from the
underlying Windows Security Architecture.

65

084835-2 Ch05.F 8/31/01 8:10 AM Page 65

Understanding Windows Security
If you have ever looked at the Windows Security API or any of its related
documentation, you have realized what a complex topic it is. Fortunately, COM+
programmers need only to know the basics.

Any security system, no matter how complicated, ultimately comes down to a
two-step process: authenticate the user, and authorize his or her access.
Authentication is the process a user goes through to prove his or her identity.
Authorization verifies that the user has rights to do what he or she is attempting.

Authentication
When you log on to your computer in a Windows domain, you supply your user ID
and password to prove that you are who you say you are. Of course, there are more
sophisticated techniques for authentication, such as smart cards and various
biometric technologies. The goal, however, is to establish your presence on the
network so that you can use various resources.

But what happens when a user logs on to his or her computer? Let’s break it
down. The logon sequence starts when the user presses Ctrl-Alt-Del. This key
sequence sends a message known as the Secure Attention Sequence (SAS) to the
Net Logon Service. The Net Logon Service starts a graphical user interface program
known as the Graphical Identification and Authentication (GINA). The GINA is
responsible for displaying the user ID and password dialog box you see when you
log in to your Windows workstation. If, for example, the user is using a smart card,
the GINA is responsible for reading data on it.

Once the user has entered his or her user ID and password (and optionally the
domain to log in to) the GINA passes the credentials to the Local Security Authority
(LSA). The LSA is responsible for authenticating the user based on the user ID and
password provided. In fact, the LSA hands off the user’s credentials to yet another
component called the authentication package. The authentication package verifies
the user’s credentials against a database and either authenticates the user or rejects
the credentials. If the user is logging in to the workstation by using a Windows user
ID and password, the authentication package verifies the credentials against the
local Security Accounts Manager (SAM) database. In the case of a domain login, the
authentication package looks at the directory database for the domain. Directory
databases reside on domain controllers in an Active Directory network. The directory
database is conceptually similar to a local computer’s SAM database except that it
stores additional data such as configuration data for the topology of the network,
and schema data. Schemas act as a sort of template that defines what properties an
object such as a user account or computer account will hold in the directory.

If the authentication package is able to authenticate the user, it reports its suc-
cess to the LSA. At this point, the LSA does two things: generates a logon session
and generates an access token. Logon sessions map one-to-one with the particular
user currently logged on to the workstation. Generally, a user cannot have two
logon sessions running on the same computer.

66 Part II: COM+ Core Services

084835-2 Ch05.F 8/31/01 8:10 AM Page 66

The access token is of particular interest here. It defines the user as the user in
the system. It is a type of data structure that contains all the information about the
user, such as the Security Identifier (SID), which uniquely identifies the user, as well
as the SIDs of any groups the user belongs to. The access token also contains an ID
that represents a user’s current logon session.

Windows security subsystems use SIDs in a similar fashion to the way glob-

ally unique identifiers (GUID) are used in COM. Just as a class identifier

(CLSID)or type library ID are unique across time and space, so are SIDs. SIDs

not only represent a user’s account but represent just about every other

entity that can be secured or identified, such as computers and groups.

Once the user’s logon session and access token have been established, the oper-
ating system starts the Windows shell. As the user launches applications, such as
Internet Explorer, the access token is copied from the shell’s process space into the
application’s process space. Now there are two access tokens, both pointing back to
the user’s logon session.

Authorization
When a user begins to access secured resources, such as a file or even a component,
Windows checks the user’s access token against the Security Descriptor (SD) for the
item being accessed. The SD is a list of all the users and groups who have access to
the resource. The SD defines which users have which privileges for the resource.

The SD is a runtime data structure composed of two items: the System Access
Control List (SACL) and the Discretionary Access Control List (DACL). Windows
uses the SACL for auditing purposes. The SACL is of little importance to a COM+
developer because it does not play a role in COM+ security. The SACL is used for
Windows auditing, not for COM+ programmatic security auditing, which you
encounter later in this chapter.

The DACL maps a user’s or group’s SID to access rights such as read, execute,
delete, and so on. At runtime, Windows examines the SIDs located in the user’s
access token and compares them to the SIDs in the DACL. If none of the SIDs in the
access token match those in the DACL, the user gets the familiar “Access Denied”
message. In the case of COM, this can lead to the E_ACCESSDENIED HRESULT.

The DACL maps user and group SIDs to access rights through Access Control Entries
(ACEs). Each ACE contains a user or group SID and the corresponding access rights for
that user or group. In any DACL, there can be two types of ACEs: an access-allowed
ACE and an access-denied ACE. Windows searches the list of ACEs in a DACL to deter-
mine the user’s effective rights on the resource. If Windows encounters an access-
denied ACE that can be applied against the user’s access token, the user is denied
access regardless of any access-allowed ACEs. If no access-denied ACEs are found, the
user is granted the sum of all access rights pertaining to all ACEs for the token.

Chapter 5: Security 67

084835-2 Ch05.F 8/31/01 8:10 AM Page 67

Special Accounts
When the Windows operating system is installed, the installer program creates a
number of special groups and user accounts. COM+ uses some of these accounts,
such as Everyone, Authenticated Users, and the Interactive User, at various times.
Other accounts, such as the System account, are utilized by the underlying services
and subsystems COM+ benefits from.

If you are like me, you have often used the Everyone account to overcome some
of those annoying security features of Windows during the development of your
applications. But what is this account, really? The Everyone account is a runtime
group account that all authenticated users belong to. In fact, when you log on to
Windows, the Everyone SID is placed in your access token. Because the Everyone
group is a runtime group, no users can be explicitly placed in it. I have often given
the Everyone group full access to files during application development to by pass
security (temporarily, of course) and to focus on a different issue. But what happens
when you give the Everyone group full control on a file? In this situation, the
DACL for the file is set to null. I want to make a distinction here between a null
DACL and an empty DACL. DACLs are empty if they contain no ACEs. Any user who
attempts to access a resource that has an empty DACL is not granted access. On the
other hand, if the same user attempts to access a resource that has a null DACL, he
or she is granted access.

Windows provides another special group called Authenticated Users. This group
is similar to the Everyone group in that it is a special runtime group the operating
system maintains. Any user who has been authenticated is a member of this group.
The key difference between Everyone and Authenticated Users is that Authenticated
Users cannot contain guests. Guests are users who cannot be authenticated but who
can still access certain resources.

The Guest account is disabled by default when Windows is installed. If Guest is
enabled, it allows users who cannot be authenticated to access resources.

The Interactive User is yet another special runtime account that represents the
currently logged-on user. COM+ uses this account as the default identity for server
applications. COM+ server applications that run under the Interactive User account
inherit the access token of the user currently logged in to the workstation. Usually,
this setting works just fine for development purposes, but it can pose a real prob-
lem when you move your component into a production environment. In a typical
production environment, nobody is logged in to the server hosting your compo-
nents. If nobody is logged in, the Interactive User account cannot represent anyone.
(Well, this is almost the case.) In a scenario where your component is running
“lights out” on a server, a virtual desktop is created when your component is
accessed. The Interactive User can take on the rights of this virtual desktop assum-
ing that the “Logon as Batch Job” and “Access this Computer from the Network”
rights are granted to the Interactive User. The problem with this approach manifests
itself in two ways. First, when an administrator logs in to the console, COM+ appli-
cations start to run under the rights of the administrator. This is bad for obvious
reasons. Second, if someone who does not normally have these rights logs in to the
server console, you indirectly give that person these rights. The Interactive User

68 Part II: COM+ Core Services

084835-2 Ch05.F 8/31/01 8:10 AM Page 68

account is really intended for COM+ applications that are part of a GUI application
running on a user’s workstation. The Interactive User account works in this type of
scenario for two reasons: someone is logged in, and you likely want your COM+
application to run under that user’s credentials.

Impersonation
Up to this point, you have encountered security within the bounds of a single user
interacting with secured resources on his or her machine. However, in a distributed
computing environment, a user needs to interact with remote resources. For a client
to be able to do this, he or she must be able to pass his or her identity (or access
token) across the network to the destination machine. At that point, the destination
machine must be able to access resources on behalf of the client by using a copy of
the client’s access token. This process is impersonation.

When a client connects to a remote server process to create a component, for
example, part of the negotiation process involves establishing the level at which
the server can impersonate the client. The impersonation level can be one of four
values, as shown in Table 5-1.

TABLE 5-1 IMPERSONATION LEVELS

Impersonation Level Description

Anonymous The server cannot see the client’s access token. In this case,
the server is not able to identify or impersonate the client.

Identify The server can read the client’s access token for the purposes
of reading its SID and determining its access rights. However,
the server cannot impersonate the client.

Impersonate The server can impersonate the client and access local
resources. The server is not able to access other remote
resources by using the client’s credentials.

Delegate This includes all of the rights to the token that the
Impersonate level grants, plus the bonus of being able to
pass on the client’s token to other remote servers.

Be aware of a couple of issues regarding these levels. First, the client gets the
only say in the impersonation level. It is not a true negotiation, as the server does
not get a vote. Second, as you see later in this chapter, an impersonation level can
be set on a COM+ package. This setting has no effect on the impersonation level
clients use to call into a COM+ application. The impersonation level setting of the
COM+ application applies only when a component in the COM+ application acts as
a client itself.

Chapter 5: Security 69

084835-2 Ch05.F 8/31/01 8:10 AM Page 69

Authenticating over the Wire
Instantiating a remote component and calling its methods is remoting. Traditionally,
the Microsoft remoting model has used Distributed COM (DCOM). DCOM uses the
Remote Procedure Call (RPC) protocol as its underlying communication mechanism.
There are two limitations in using DCOM, however. First, both client and server must
run the COM runtime. Usually, this is ok when parts of your application must talk to
each other over the Internet, where you are likely to have a Windows client talking
to a Windows server. But this model breaks down when the client is on the Internet.
Generally, you cannot be assured that a client on the Internet is configured to use
COM. In addition, a client on the Internet may have to communicate back to the
server through firewalls and even network routers that perform Network Address
Translation (NAT). The details of overcoming DCOM issues through firewalls and
NAT tables aren’t necessary here, but these can be particularly nasty problems to
overcome, especially if you do not anticipate them in the design of your application.
Server farms can provide a hurdle for your components that use DCOM. Server
farms, or clusters, combine several identical Web or application servers into a single
virtual server. Clients connect to a cluster based on the cluster IP address that is
shared across all servers in the cluster. When a request from a client comes into the
cluster, one of the available servers processes the request. For DCOM to work over
a cluster, the client’s method calls must always return to the original server
that instantiates the component. This is known as affinity. Affinity can reduce
the potency of a cluster by hampering how evenly the work is distributed across the
servers that make up the cluster.

Because of these problems with DCOM, the trend Microsoft has taken with
remoting is to route method calls through HTTP. Remote Data Services (RDS) was
the first Microsoft technology to provide remoting over HTTP. RDS is provided as
part of the Microsoft Data Access Components (MDAC). With RDS, you can instan-
tiate remote components and even make SQL calls from the client to a database.
Because RDS goes through the Web server, it can get you over the affinity hump.
But you still have client dependencies because the client must have MDAC installed.

The current trend in remoting uses a technology called the Simple Object Access
Protocol (SOAP). SOAP uses XML to encode method-invocation requests, and it uses
HTTP to transport those requests to the component. SOAP gets you around client
dependencies because an XML parser and a networking component that can formu-
late HTTP requests are the only requirements. The implementation of the XML parser
and the HTTP component are completely irrelevant to the SOAP protocol. As you
see in Chapter 9, the .NET Remoting architecture uses SOAP extensively.

Both SOAP and RDS use endpoints to instantiate a component and call its meth-
ods. SOAP typically uses an Active Server Page (or ASP .NET Web Service page) as
its endpoint. RDS uses a Web server extension dll as its endpoint. The process is as
follows. The client makes a method call on some kind of proxy object. The proxy
object is responsible for encoding the method call and submitting the HTTP request
to the Web server. Part of the HTTP request is the URL to the endpoint. When the
HTTP request reaches the endpoint, the Active Server Page or extension dll acting

70 Part II: COM+ Core Services

084835-2 Ch05.F 8/31/01 8:10 AM Page 70

as the endpoint unpacks the call, instantiates the COM+ object, and makes the
requested method call.

Understanding Authentication in IIS
In light of the HTTP remoting trend Microsoft has adopted, it is particularly
relevant to discuss how Microsoft Internet Information Server (IIS) handles authen-
tication and how it impersonates the client. IIS is Microsoft’s Web server that ships
with Windows 2000. This section explains how IIS and Windows security work
together to authenticate a client application making HTTP requests.

By default, IIS runs under the System account. Most native operating system ser-
vices run as this account by default. When a request for an Active Server Page, or,
in our case, a method call for a component, comes into IIS, IIS dispatches a thread
to execute the request. In fact, to optimize performance, IIS maintains a pool of
worker threads to service requests. Because the System account has so many
privileges, IIS does not like to run these worker threads under this account. Instead,
it prefers to use either the client’s user account (assuming the client has been
authenticated) or the default account created when IIS is installed. The default
account is named based on a concatenation of IUSR_ + Server Name. For example,
if a Web server is named WWW1, the default user account is named IUSR_WWW1.

If each request looks like it is coming from IUSR, this defeats the purpose of
using COM+ security. Because COM+ security is derived from Windows security,
there must be a way to map a client’s credentials from a remote method call to a
COM+ component. The answer lies in securing the endpoint that may be imple-
mented. Once the endpoint is secured with the proper user and group accounts and
access permissions, IIS prompts the user for his or her credentials. If the user
supplies the proper credentials and has access to perform the requested operations
against the endpoint, IIS dispatches one of its worker threads to handle the request.
The worker thread impersonates the client by using a special access token called an
impersonation token. As a COM+ developer, all you really need to know about
an impersonation token is that it authenticates against a component as if the
impersonation token were the client’s own access token.

IIS provides four methods for authenticating a user:

� Anonymous access

� Basic authentication

� Digest authentication

� Integrated Windows authentication

Anonymous access should be used for pages or endpoints that do not need to be
secured. In this scenario, IIS impersonates the IUSR account with one of its worker
threads. The next step up from Anonymous access is Basic authentication. You can
think of this as the default authentication method for HTTP. The big problem with
Basic authentication is that the client’s user ID and password are transmitted across

Chapter 5: Security 71

084835-2 Ch05.F 8/31/01 8:10 AM Page 71

the network in clear text. Digest authentication and Integrated Windows authenti-
cation, on the other hand, do not transmit the user’s credentials in clear text. In
both of these modes, the client generates a hash based on its credentials. The hash
is sent over the network, and analyzed by the server. This technique is more secure
than Basic authentication, but it does introduce client dependencies. This may be
something you are trying to avoid if you wish to run your application on the
Internet. Digest authentication applies only when a Windows 2000 client (work-
station or server) needs to talk to another Windows 2000 server. Digest authentica-
tion requires a domain server to issue a certificate used during the transmission of
data. Integrated Windows authentication is used when at least one party runs
Windows NT.

Using the COM+ Security Model
You learn at the beginning of this chapter that the .NET Framework security attrib-
utes put the power of configuring an application into the hands of the developer.
As you will see in this section, the .NET Framework provides a corresponding
attribute for each of the declarative security attributes defined in the COM+ catalog.
Unless otherwise stated, all of the .NET security attributes described in this section
can be found in the System.EnterpriseServices namespace.

Authentication & Authorization
The first step toward configuring security in COM+ is to set the authentication
level. Authentication is either turned on or off at the package level. The degree to
which the client is authenticated is also set at the package level. Figure 5-1 shows
the security tab for a server application.

Figure 5-1: Server application security tab

72 Part II: COM+ Core Services

084835-2 Ch05.F 8/31/01 8:10 AM Page 72

The first attribute on this tab is Authorization. When checked, this attribute
turns on role-based security for all components in the application. For a server
application, this attribute has the additional effect of enabling the authentication
level to be enforced.

The attribute below Authorization is the security level. As you can see from
Figure 5-1, the security level is one of two values: process level or process level and
component level. The default value for this attribute is to perform authorization at
the component and process levels (second bullet in the group). This value must be
used if you wish to perform programmatic security in your components. COM+
does not initialize a security context for components in applications that perform
only access checks at the process level (first option in the group).

The .NET Framework includes an attribute called ApplicationAccessControl.
C# applications use this attribute to set the security level of an application. Because
the security level is set on an application, the ApplicationAccessControl
attribute must be defined for an assembly. The ApplicationAccessControl
attribute has several properties that correspond to the various COM+ attributes on
the Security tab. To set the security level of a COM+ application, use the
AccessChecksLevel property. The code sample that follows shows how to use this
property and how to apply the AccessChecksLevel property to an assembly.

using System;
using System.EnterpriseServices;
[assembly: ApplicationAccessControl(

AccessChecksLevel = AccessChecksLevelOption.ApplicationComponent
)

]
public class SecuredComponent : ServicedComponent {

// some method implementations
}

Notice that I use the assembly keyword inside the attribute tags. This tells the C#
compiler that the attribute is assembly level. Inside the attribute declaration, I have
set the AccessChecksLevel property to application and component by using the
AccessChecksLevelOption enumeration.

Performing access checks at the process level ensures that the caller has permis-
sion to execute the application. If this is the case, the caller can instantiate and
consume any of the components in the application. If your application is a
server application, you are relying on dllhost.exe (the COM+ host exe for server
applications) to perform access checks. However, if you are developing library
applications, you are relying on some other host to perform those checks. This is not
likely to be an acceptable scenario if you are using programmatic, role-based secu-
rity. If authentication occurs only at the process level, COM+ does not initialize the
security context for components. Without a security context, components are not
able to see who is trying to access the component and what roles users may be in.

The Authentication attribute defines how stringently COM+ verifies the
identity of the caller. The caller can be authenticated based on one of six possible
values, as in Table 5-2.

Chapter 5: Security 73

084835-2 Ch05.F 8/31/01 8:10 AM Page 73

TABLE 5-2 AUTHENTICATION LEVELS

Authentication Level Description

None The client is never authenticated when it calls into a
component. Setting the authentication level to none has the
same effect as turning off authorization for the application.

Connect Authentication is performed when the caller connects to the
application.

Call Authentication occurs at every method call.

Packet Packets are analyzed to ensure that all have arrived and that
they have all come from the client. This is the default
authentication level.

Packet Integrity Packets are analyzed to verify that none have been modified in
transit.

Packet Private Packets are encrypted for transport over the network.

Authentication levels become more stringent, or more protective, the farther you
go down the list. For example, Call ensures a higher authentication standard than
Connect; Package Packet ensures a higher standard than Call, and so forth. Keep
in mind, however, that the higher the level of authentication you choose for your
application, the greater the likelihood that performance will be affected.

In the .NET Framework, the authentication level is defined at the assembly level
by using the ApplicationAccessControl attribute. The property of this attribute
that controls the authentication level is called, logically enough, Authentication.
The Authentication property uses the AuthenticationOption enumeration to set
the property to one of the corresponding authentication levels. I have added this
property to the preceding code example.

using System;
using System.EnterpriseServices;
[assembly: ApplicationAccessControl
(
AccessChecksLevel = AccessChecksLevelOption.ApplicationComponent
Authentication = AuthenticationOption.Connect

)
]
public class SecuredComponent : ServicedComponent {

// some method implementations
}

74 Part II: COM+ Core Services

084835-2 Ch05.F 8/31/01 8:10 AM Page 74

The authentication level is negotiated between the caller and the application.
Whoever requests the higher authentication level wins. For example, if the caller
requests Packet, and the application requests Packet Integrity, the authentica-
tion level is Packet Integrity. This behavior allows each party to specify a
minimum level of authentication. It is important to understand that this negotia-
tion occurs between two processes. Because library applications do not run in their
own process but rather in their caller’s process, setting this attribute is not an
option for library packages.

The discussion about Windows security in this chapter leads us into imperson-
ation. Remember that impersonation is the level at which a client allows another
process or thread to use its identity. In COM+, impersonation applies when a compo-
nent in a server application acts as a client itself. At the bottom of the security tab in
Figure 5-1, you can see the impersonation list box. Each of the four impersonation
levels is available to a COM+ application.

� Anonymous

� Identify

� Impersonate (default)

� Delegate

If you are developing server applications that use components in other applica-
tions implementing role-based security, you must choose an impersonation level
other than Anonymous. This setting effectively hides the caller’s identity from the
application you are trying to use.

Once again, use the ApplicationAccessControl attribute in .NET to determine
this level at the time of deployment. The ImpersonationLevel property allows you
to specify the impersonation level by assigning one of the values from the
ImpersonationLevelOption enumeration. If you add an impersonation level of
Delegate to the preceding code, you get the following code snippet.

using System;
using System.EnterpriseServices;
[assembly: ApplicationAccessControl
(
AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent,
Authentication=AuthenticationOption.Connect,
ImpersonationLevel=ImpersonationLevelOption.Delegate

)
]
public class SecuredComponent : ServicedComponent {

// some method implementations
}

Chapter 5: Security 75

084835-2 Ch05.F 8/31/01 8:10 AM Page 75

Role-based Security
Roles are used to group together users and groups that need to perform similar
functions within an application. Roles are defined at the application level. Role-
based security can be performed on the component, interface, and even the method
level. Both server and library applications can implement roles and apply them to
their components.

Figure 5-2 shows the expanded list of roles for one of the applications on my
computer. Notice that I can specify multiple roles within one application. In addi-
tion, within each role, I can add multiple users and groups. For instance, in the
Authors role, I have added the user Nick and the group HMI Authors.

Figure 5-2: Application roles

Once you have defined the roles for your application, you can apply them to
components, interfaces, and methods. Security in COM+ is inherited downwards. If
you define a role for a particular component, that component’s interfaces inherit
the role. Figure 5-3 shows the security tab for a component called CAuthors. As
you can see, both the Authors and Editors roles are listed. However, access to this
component I limited to those users in the Authors role.

Because Nick is a member of the authors group, he is able to access the
CAuthors component. When a caller accesses a component, COM+ builds an SD
from the users and groups in the Authors role. In the example, the security descrip-
tor contains Nick’s SID, as well as the SID of the HMI Authors group. If Nick’s SID
is in the SD, he is given access; if not, he gets an “Access Denied” error.

76 Part II: COM+ Core Services

084835-2 Ch05.F 8/31/01 8:10 AM Page 76

Figure 5-3: Security tab for CAuthors component

Security roles can be defined by your C# classes and assemblies through the
SecurityRole attribute. This attribute can be defined on the assembly level just as
the ApplicationAccessControl attribute. This attribute can also be applied to a
class. When it is applied to a C# class, it has the effect of applying that role to the
class. When you use the SecurityRole attribute, you have your choice of two con-
structors. The first constructor takes one parameter: the name of the role you wish
to create or apply to the class. The default behavior of this constructor places the
special Everyone group into this role. The second constructor, which I have chosen
to implement, takes the role name (string data type) as the first parameter and
boolean parameter to specify whether or not the Everyone group is added to this
role. Aside from adding the Everyone group to a role, you must rely on an admin-
istrator to add users and groups to your roles by using the Component Services
Explorer.

The SecurityRole attribute does not enable authorization for the component.
For that, you need to use the ComponentAccessControl attribute. This attribute is
applied only at the class level. The default constructor (parameterless) enables
authorization for the component. Also, there is a constructor for this attribute that
takes a boolean parameter. With this parameter, you can either enable authorization
(by passing in true) or disable authorization (by passing in false).

I have added the SecurityRole attribute and the ComponentAccessControl
attribute to our SecuredComponent class. I have added a new role called customers,
and I have given the Everyone group access to this component.

using System;
using System.EnterpriseServices;
[assembly: ApplicationAccessControl
(

Chapter 5: Security 77

084835-2 Ch05.F 8/31/01 8:10 AM Page 77

AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent,
Authentication=AuthenticationOption.Connect,
ImpersonationLevel=ImpersonationLevelOption.Delegate

)
]

[SecurityRole(“customers”, true)]
[ComponentAccessControl]
public class SecuredComponent : ServicedComponent {

// some method implementations
}

The ComponentAccessControl attribute may look a little peculiar. Notice that I
have not included the parenthesis for this attribute. The C# compiler interprets this
to mean that I wish to use the default parameterless constructor for this attribute.

When this class is compiled and registered with COM+ using the RegSvcs tool,
the customers role is created, and the Everyone group is added to this role.
Effectively, this means that anyone who can be authenticated is allowed to use this
component. Figure 5-4 shows what the security tab for the SecuredComponent
class looks like once it has been installed into COM+.

Figure 5-4: Security tab for
SecuredComponent class

Understanding Security Scope
You must consider several issues when deploying your components into COM+
applications. You have already encountered several issues. For instance, if your
application needs to enforce an authentication level or an impersonation level, you

78 Part II: COM+ Core Services

084835-2 Ch05.F 8/31/01 8:10 AM Page 78

are best off deploying your components in a server package. Another issue deals
with the chain of calls that can arise when the base client (the user’s process) calls
into a component and that component calls another component and so on. COM+
enforces role checking based on the SID of the direct caller. Let’s walk through
anexample to see how this may affect deployment decisions. Let’s say our user,
Nick, opens his browser and navigates to the URL of one of our secured ASP .NET
pages. Because the page is secured, he is prompted for his user ID and password.
When Nick successfully authenticates to the page, IIS assigns one of its worker
threads to process the page Nick has requested. This thread operates under a copy
of Nick’s access token. When the worker thread hits a section of code in the ASP
page that creates a new managed COM+ object running in a server package, an
instance of dllhost is started (assuming there is not already a running instance).
Likely, the instance of dllhost is running under a generic user ID, as we now know
the Interactive user is not a good choice for server-based deployment. When Nick’s
worker thread tries to access the component, the SIDs in Nick’s access token are
compared to the SIDs in the component’s SD. If two matching SIDs are found, Nick
is granted access. So far, everything seems ok, right? Well, what happens if the
component the Active Server Page is using accesses another component in another
COM+ package? The answer is that the SID from the access token for the dllhost
process is used for role authentication on the second component. In this scenario,
Nick’s access token is not used for authenticating to the second component. Figure
5-5 illustrates this process in detail.

Figure 5-5: Call chain security

The point of all this is that the direct caller may or may not be the actual user.
The list of all user accounts calling components in an application is the call chain.
It is important to understand how the call chain affects security because it may

Nick's browser

1. URL request

2. Basic authentication challenge

3. Response with user id and password

4. IIS assigns a worker thread
to process Nick's page request

5. ASP calls new Component A

7. Component A calls new Component B

8. COM+ enforces roles based
on COMUser's access token,

not Nick's access token

6. Nick's access token is compared
with the security descriptor for

the component

IIS on Windows 2000

Active Server Page
running under Nick's

access token

Server Package A

Component
A

DIIhost running under
generic user account:

COMUser

Server Package B

Component
B

DIIhost running under
generic user account:

COMUser

Chapter 5: Security 79

084835-2 Ch05.F 8/31/01 8:10 AM Page 79

cause you to inadvertently to give or deny a user access to one of your compo-
nents. If you get into this scenario in your applications and you wish to enforce
security on a user somewhere up in the call chain, you must do it programmatically.

Fortunately, .NET provides a collection class that gives you access to each of the
users in the call chain. The SecurityCallers class represents each of the users in
a call chain. Each item in the SecurityCallers collection represents a
SecurityIdentity class. This class contains information such as the user’s
account name and impersonation level. To gain access to the SecurityCallers
collection, you must call the CurrentCall property of the SecurityCallContext
class. The CurentCall property of the SecurityCallContext class is a static
property that returns the security-context information for a component. Using this
property, you can gain access to the Callers property of SecurityCallContext.
The Callers property returns an instance of the SecurityCallers collection. In
the code that follows, I have extended the SecuredComponent class from our
previous examples to give you a flavor of how these classes are used together.

[SecurityRole(“customers”, true)]
[ComponentAccessControl]
public class SecuredComponent : ServicedComponent {
public void ShowCallChain(){
SecurityCallContext sc=SecurityCallContext.CurrentCall;
SecurityCallers scs=sc.Callers
Foreach (SecurityIdentity si in scs) {
Console.WriteLine(si.AccountName);

}
}

}

There is one last point I wish to make about the scope of security in COM+.
Security is performed on the application boundary. In the preceding scenario, Nick
has been denied access to component B because the call chain crossed application
boundaries, which forced the direct caller’s (COMUser) role membership to be
verified. If component B were in the same COM+ application as component A, Nick
would be granted access even though he technically is not in any of the
roles assigned to component B. If you encounter this scenario, it may be useful
to determine programmatically if the caller is in the role you wish. The
SecurityCallContext class implements a method called IsUserInRole. This
method takes the name of the role and the user’s account name as input parameters
and returns true if the user is in the role or false if the user is not in the role. To get
the user’s account name, use the SecurityIdentity class’s AccountName property.

[SecurityRole(“customers”, true)]
[ComponentAccessControl]
public class SecuredComponent : ServicedComponent {
public void ShowCallChain(){
SecurityCallContext sc = SecurityCallContext.CurrentCall;

80 Part II: COM+ Core Services

084835-2 Ch05.F 8/31/01 8:10 AM Page 80

SecurityCallers scs = sc.Callers;
Bool CustomerInCallChain = false;
Foreach (SecurityIdentity si in scs) {
If (sc.IsUserInRole(si.AccountName, “customers”)) {
CustomerInCallChain = true;
break;

}
}
if (!CustomerInCallChain) {
throw new UnauthorizedAccessException(“no customers found in

call chain”);
}

}
}

In the preceding example, if you do not find a customer anywhere in the call
chain, throw an UnauthorizedAccessException. This is an exception class found
in the System namespace. The .NET runtime raises this exception anytime a caller
does not have access to a component, interface, or method.

Summary
Whew! We have certainly covered a lot of ground in this chapter. Security is proba-
bly one of the most difficult topics to understand in all of computer science.
Understanding how role-based security works in COM+ becomes much easier if you
are at least familiar with how Windows security architecture implements those ser-
vices. In light of the current trend in remoting, namely the use of HTTP for method
calls (Web services), I think it is particularly relevant to discuss how IIS authenticates
users and how a user’s access token is used at different points in the call chain.
Above all, I hope you have been able to see how the attributes and classes in the
.NET Framework help to simplify development and deployment of your components.

In Chapter 6, you encounter the COM+ event model. Also, you encounter to the
.NET event model and compare the two.

Chapter 5: Security 81

084835-2 Ch05.F 8/31/01 8:10 AM Page 81

084835-2 Ch05.F 8/31/01 8:10 AM Page 82

Chapter 6

Events
IN THIS CHAPTER

� Understanding the need for LCEs

� Understanding the LCE Architecture

� Writing LCE Components in C#

EVENT-BASED PROGRAMMING has been the primary development model for graphical
user interface applications for many years. In many Windows user interface appli-
cations, a button click or a mouse movement triggers an event. When the event is
raised, another part of the application can respond and react accordingly. This
development model works well when the source of the event, the event itself, and
the piece of code responding to the event are all contained in the same application.
This type of event model is a Tightly Coupled Event (TCE). As you’ll see in this
chapter, this development model does not work so well for distributed applications.

Because of the limitations of TCEs for distributed or server-based applications,
COM+ supports an event system known as a Loosely Coupled Event (LCE). In this
chapter, you delve into the reasons distributed applications need LCEs. You accom-
plish this by examining the .NET event model and comparing it to LCEs. Also, you
examine the LCE architecture including the limitations and requirements for LCE
components. No discussion of a COM+ feature is complete without including the
appropriate attributes from the catalog and the framework.

Understanding the Need for LCEs
TCEs include the .NET event model and the COM Connection Point event model.
TCEs are primarily used in user interface-based applications where one application
contains the entire life of the event. In a TCE, the source of the event (the publisher)
and the method or component that handles the event (the event subscriber) are closely
tied together. This model has worked well for user-interface applications, but it falls
short when you want to implement it in a distributed environment. TCEs suffer from
the following general problems when they are used for distributed applications:

� Subscribers must be running when the publisher initiates an event.

� There is no way to filter or intercept events before they reach the
subscriber.

83

094835-2 Ch06.F 8/31/01 8:10 AM Page 83

� Subscribers must have explicit knowledge of the publisher.

� The publisher has to have a list of all subscribers.

To understand each of these points, run through an example of a .NET TCE.

.NET Event Architecture
The .NET Framework event model shares some similarities with the COM+ event
model. The .NET event model has a class that sends events and a class that receives
events. The class that sends events can roughly be equated to the publisher in a
COM+ event. You can think of the class that receives events as a COM+ event
subscriber.

The event class must have some mechanism for sending the event notification
and associated information to the event receiver class or classes. This is accom-
plished through a special type of class called a delegate. Delegates are managed
pointers to methods. If you are familiar with function pointers in C or C++, you can
think of .NET delegates as their close relatives.

As you see in the example that follows, delegates are declared with the C# key-
word delegate, followed by the return type, delegate name, and parameters.
Delegates are defined outside of the definitions of the event source and receiver
classes. They are used to tie, or wire, the event source to the event receiver. The
event source defines a member variable of the delegate type. Event receivers that
wish to subscribe to the event must implement a method that has the same signa-
ture as the corresponding method from the delegate. At runtime, the method the
event receiver provides is wiredto the delegate the event source defines. This
becomes clearer in a moment.

Method signature refers to the return type and the number and data types of

a method’s parameters. In the case of .NET events, the method the receiver

class implements can be given any legal method name. It is only important

for the method’s signature to match with the delegate’s method signature.

The typical signature for a delegate is a void return value and two parameters:
object type and an event-arguments type. If you develop WinForms or ASP .NET
pages, you see that the signature for various event methods such as a button click
or mouse movement is a void return value with object type and event arguments
type as parameters. The reason for making this a void function is that many
receivers might be receiving events from the event source. A return value is pretty
useless in this scenario, as the return value represents only the last receiver to be
notified. All other return values from other receivers are lost. The first parameter,
and object type, represents the instance of the class that has raised the event.
Because the type cannot be known necessarily ahead of time, this parameter type is

84 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 84

System.Object. Usually, the second parameter is a class that contains the event
arguments for the event. For example, in a mouse-move event, the event arguments
class might contain the x and y axis positions of the mouse.

Listing 6-1 shows an example of an event source class named EventSource and
an event receiver class named EventReceiver. The event class uses the delegate
MyEventHandler to define a delegate event member type called EH. The event key-
word is a C# construct used to declare a member of a delegate type. This delegate
instance is wired to the corresponding event method of the EventReceiver class
named EventMethod. Notice that the signature of the EventMethod class matches
that of the delegate class, but the signature is not defined as a delegate type.

Listing 6-1: Event source and receiver classes

namespace MyNetEvents
{
using System;
public delegate void MyEventHandler(string msg);

public class EventSource
{
public event MyEventHandler EH;
private void OnEvent(string msg)
{
EH(msg);

}
public void FireEvent()
{
OnEvent(“hello”);

}
}

public class EventReceiver
{
public void EventMethod(string msg)
{
Console.WriteLine(“EventReceiver: “ + msg);

}
}

public class CMain
{
public static void Main()
{
// instantiate the event destination class
EventReceiver er = new EventReceiver();

Chapter 6: Events 85

094835-2 Ch06.F 8/31/01 8:10 AM Page 85

// instantiate a new event source
EventSource es = new EventSource();

// wire the event
es.EH += new MyEventHandler(er.EventMethod);

// fire the event
es.FireEvent();

}
}

}

After instantiating instances of the two classes, you are able to wire the
er.EventMethod method to the EH delegate by instantiating a new instance of the
MyEventHandler class. The .NET runtime provides a single parameter constructor
for delegates. As you can see, the constructor takes a reference to a method that has
the same signature as the delegate. The new instance of the delegate is wired to the
EH instance by using the += operator. Finally, call the FireEvent method on the
instance of the event source class. The FireEvent method is pretty straightforward.
It does calls the private OnEvent method of the event source. Normally, the
OnEvent method is called only if some condition becomes true or if some event
happens in the FireEvent method. The OnEvent method is private; normally, you
want the event to fire only if some condition becomes true in the event source
class. You do not want clients of the event source class firing events.

The OnEvent method fires the event by calling the EH delegate. The .NET runtime
is responsible for retrieving the list of classes that have wired themselves to the
event and for calling their event methods. In your case, the method the runtime
calls is er.EventMethod.

Comparing TCE Events to COM+ LCE
Now that you have an idea of how tightly coupled events work in the .NET
Framework, address the points you encounter at the beginning of this section. The
first point is that subscribers must be running in a TCE model before the publisher,
or event source, initiates the event. In the preceding code example, before you can
wire the event receiver’s event method to the delegate and receive events, you must
instantiate an instance of the receiver class. In the COM+ event model, classes that
receive events (called subscribers) do not need to be activated before the event
occurs.

The second point is that there is no way to filter events before they are sent to
the receiver(s). The .NET runtime manages the list of receivers and calls their event
methods. Unfortunately, it does not provide any mechanism to prevent calls from
being made to receivers. Later in this chapter, you encounter methods COM+ pro-
vides to filter event notifications.

86 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 86

Essentially, the last two points state that the subscriber and publisher must have
explicit knowledge of each other. In the preceding example, the subscriber class is
the EventReceiver class, and the publisher is the Main method of the CMain class.
The Main method instantiates the event receiver class itself and knows which
method must be used to wire the event. This requires explicit knowledge of the
receiver’s method(s) and the number and types of receivers. The COM+ event model
stores this information in the COM+ catalog, which the COM+ runtime accesses
itself when an event is fired. Because of this service, the publisher does not need to
know who its subscribers are or which of the methods must be called for an event.

The LCE Architecture
The COM+ event system is loosely coupled for a number of reasons. First off, the
publishers and subscribers do not need to know of each other. Generally, the pub-
lisher does not need to know who the subscribers are or how many of them exist.
Subscribers can come and go at anytime without breaking the publisher’s applica-
tion. Secondly, the subscribers do not need to be active at the time the publisher
initiates the event. As you see in a moment, COM+ activates the subscribers on
behalf of the publisher when the publisher initiates an event. These features are
quite different from the tightly coupled event architecture described in the first sec-
tion of this chapter.

The COM+ Event system is a Windows 2000 service that propagates events

to subscribing components.

An application that uses LCEs consists of four entities:

� publisher

� event class

� subscriber(s)

� event(s)

Publishers start the process by activating the event class and calling its methods.
Each method the publisher calls represents a single event. When the event class is
activated, COM+ queries its catalog for a list of interested subscribers. Once this list
is determined, COM+ redirects method calls made on the event class to the sub-
scriber classes. Figure 6-1 illustrates this process.

Chapter 6: Events 87

094835-2 Ch06.F 8/31/01 8:10 AM Page 87

Figure 6-1: Publisher to subscriber call chain

As a rule of thumb, publishers cannot determine the order in which subscribers
are notified about an event. The COM+ event system makes this determination.
Later in this chapter, you see a couple of techniques for influencing the order in
which subscribers are notified.

Subscribers need to implement the method(s) the publisher calls on the event
class in order for all of this to work. The event class does not need to implement the
methods to which subscribers choose to subscribe. In fact, even if the methods are
implemented, they are not called when the publisher initiates the event. Although
the publisher thinks it has a simple reference to an event class, it is talking to the
COM+ event system, which, in turn, is making calls to subscribers.

For a subscriber to subscribe to an event class’s events (methods), it must imple-
ment the interface(s) the event class supports. The subscriber does not need to
implement all the interfaces of the event class, only interfaces that contain methods
from which the subscriber wishes to receive events. Interface identifiers of the sub-
scriber and event class (GUIDs) must also be the identical to each other.

Event classes must meet certain criteria to work properly in the LCE system. One
of the criteria is that the class cannot contain implementations of any of its meth-
ods. An event class’s methods must not contain any output parameters if the event
class is to have more than one subscriber. In other words, the event class cannot
contain methods that return a value to the publisher as a parameter. If you think
about it, this rule makes sense for two reasons. First, if there are multiple sub-
scribers, each of whom changes the value of the output parameter before it reaches
the publisher, how does the publisher know if the returned value is correct? The
publisher cannot know this. Second, if the publisher does not need to know about
its subscribers, it does not necessarily care about actions or return values sub-
scribers take.

An event class must return only success or failure COM HRESULTs. This is not
something you need to be terribly concerned about if your application runs entirely

Publisher

1. Publisher creates a new
instance of event class

2. COM+ queries catalog
for the list of subscribers to

this event class

3. COM+ instantiates new
instances of all subscribers and
calls the corresponding method

COM+ Runtime

Event Class

Subscriber
Class

Subscriber
Class

Subscriber
Class

COM+ Catalog

88 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 88

in managed code. However, you want to know this if you are writing managed
event classes unmanaged subscribers use.

Understanding Subscriptions
COM+ supports two types of subscriptions: persistent and transient. Persistent sub-
scriptions remain in the COM+ catalog until they are physically taken out. These
types of subscriptions must be added via the Component Services Explorer snap-in
for both managed and unmanaged code. The .NET Framework does not provide
attributes for adding subscriptions to the COM+ catalog.

The COM+ Administration API is COM based and supports programmatic

administration of the COM+ catalog. All of the functionality (and much

more) of the Component Services snap-in can be reproduced through the

Admin API.

Transient subscriptions, on the other hand, exist only within the lifetime of the
subscriber component. Transient subscriptions cannot survive a restart of the
COM+ event system or a reboot of the machine they are running on. They must be
added at runtime by using the COM+ Admin API. Unlike persistent subscriptions,
which instantiate a new instance of the subscriber, transient subscriptions are
added by making a reference to an already instantiated component in the COM+
catalog.

Be aware of one other type of subscription. Per User subscriptions allow you to
create a subscription when a user logs on to the system. When the user logs off,
these subscriptions are disabled. These types of subscriptions work only when the
publisher and the subscriber are on the same computer.

COM+ Attributes
The COM+ attributes for a LCE component application really center on the event
class. Subscribers and publishers (if the publisher is a COM+ component) do not
need event-specific attributes set in order for the event system to work. You exam-
ine the event attributes and their values in this section; in the last part of the chap-
ter, you see how these attributes are implemented in the .NET Framework. The
COM+ event attributes are as follows:

� Fire in Parallel

� Allow in-process subscribers

� Publisher ID

Chapter 6: Events 89

094835-2 Ch06.F 8/31/01 8:10 AM Page 89

FIRE IN PARALLEL
The Fire in Parallel attribute affects the way in which the event system notifies sub-
scribers. Figure 6-2 shows this attribute as checked in the Advanced tab in
Component Services Explorer. With this attributed checked, COM+ notifies sub-
scribers at the same time. Normally, the event system notifies subscribers in a serial
fashion. By default, this attribute is not checked.

Figure 6-2: Fire in Parallel attribute in Component Services Explorer

This attribute can have a positive effect on the performance of your application
because COM+ initiates multiple threads to notify subscribers. If this attribute is not
checked, the event system notifies subscribers one by one, and it waits for each
subscriber to return before calling the next.

ALLOW IN-PROCESS SUBSCRIBERS
By default, the Allow in-process attribute is selected. When this attribute is turned
off, COM+ does not allow subscribers to run in the same address space of the pub-
lisher. Even if the subscriber is configured as a library package, COM+ creates a
new process for the subscriber. The reason for this default behavior stems from
security concerns. Because the publisher does not necessarily know about sub-
scribers, it cannot trust subscribers to behave properly inside its process. If, how-
ever, you are writing a publisher application and you feel you can trust the
subscribers of your event class, you can enable the Allow in-process subscribers
attribute. By checking this option, you are trading stability for performance. This
attribute setting can be found on the Advanced tab of the event class’s properties.
Refer to Figure 6-2 to see this attribute in Component Services Explorer.

90 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 90

PUBLISHER ID
The Publisher ID attribute (also visible from Figure 6-2) provides another way for a
subscriber to subscribe to an event class. You have explored one way for a sub-
scriber to subscribe to an event: the CLSID of the event class. Publisher ID allows
you to use a more user-friendly method for creating a subscription. Understand that
this attribute applies to the event class, not the publisher. The name can be a little
misleading, so do not get confused.

Controlling Subscriber Notification Order
COM+ provides two methods that allow you to influence the order in which sub-
scribers are notified of events: publisher filtering and parameter filtering. Publisher
filtering is a bit more complicated to implement than parameter filtering, but it
allows for a finer degree of control.

PUBLISHER FILTERING
Publisher filtering is a technique that allows publishers to specify a filter compo-
nent that should be used when events are triggered. The filter component is respon-
sible for making decisions about which subscribers should be notified about an
event and in what order they should be notified.

The publisher uses the COM+ Admin API to set the PublisherFilterCLSID
property for an event class. This is a read/write property that accepts the CLSID of
the filter component. The filter is simply another COM+ component that imple-
ments either the IMultiPublisherFilter interface or the IPublisherFilter
interface.

When the event class is instantiated, the event system looks at the
PublisherFilterCLSID property and instantiates the corresponding filter compo-
nent. When the publisher fires the event on the event class, the event system passes
control to the filter object. The filter object’s responsibility is to forward events to
subscribers. The filter component accomplishes this by retrieving a collection of
subscribers and firing the event on each subscriber. The filter component, of course,
can elect not to fire an event for a particular subscriber. When the filter component
fires an event, the event system takes over and initiates the event on subscribers.

PARAMETER FILTERING
Parameter filtering can be used in conjunction with publisher filtering, or it can be
used by itself. The subscriber component, as opposed to the publisher, implements
this technique. Through an option in the subscription properties, the subscriber can
define criteria that can influence whether the event system fires a method.

Figure 6-3 shows the properties dialog box for a subscription for a subscriber
component. The Filter Criteria dialog box on the Options tab defines the parameter
filter for the subscription. This particular parameter filter defines a rule that enables
the subscription if the parameter named Symbol equals “MSFT” and the parameter
Price does not equal 60. If the condition defined in the filter criteria evaluates as
true, the event is processed for that subscriber. In addition, if you define a filter

Chapter 6: Events 91

094835-2 Ch06.F 8/31/01 8:10 AM Page 91

criteria and your subscription is for all methods of that interface, the criteria are
applied to all methods. For example, if you define a parameter called Symbol and
that parameter is not found in one of the interface’s methods, your event fails. You
see how this works in the last section of this chapter.

Figure 6-3: Filter Criteria dialog box for a subscription

The operators for the criteria string are rather simplistic. The operators include
equality symbols and logical operators such as AND, OR, and NOT. If you need a more
sophisticated strategy, you should consider using publisher filtering.

Parameter filtering does not have a direct effect on the order in which sub-
scribers are notified. Parameter filtering can be used to determine if an event fires
for a particular subscription based on the values of parameters at runtime. This
technique can have the side effect of determining which publishers get notified and
possibly in which order.

Writing LCE Components in C#
In the last part of this chapter, you see how to write different event and subscriber
classes. The first set of classes is an introduction to writing components that use
LCE. This example consists of a subscriber component that uses a static subscrip-
tion to the event class. The second and third examples use some of the other fea-
tures of COM+, namely object pooling and transactions. For each of the examples,
a C# console application is the publisher.

92 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 92

Your First LCE Component
Listing 6-2 shows a single namespace that contains both the subscriber class and
the event class. As you can see, the subscriber class is MySubscriberClass; the
event class is MyEventClass. Each of these classes implements an interface called
IMyEvents. The IMyEvents interface contains one method — PrintName— that
prints out the name of the class on which the event is called. In this case, the out-
put of this method, or event, is the name of the subscriber class.

Listing 6-2: A simple LCE component

using System.Reflection;

[assembly: AssemblyKeyFile(“mykey.snk”)]

namespace MyEvents
{
using System;
using System.EnterpriseServices;

[EventClass]
public class MyEventClass : ServicedComponent, IMyEvents
{
public void PrintName() {}

}

public class MySubscriberClass : ServicedComponent, IMyEvents
{
public void PrintName()
{
Console.WriteLine(“MyEvents.MySubscriberClass”);

}
}

public interface IMyEvents
{
void PrintName();

}
}

The first two lines should look familiar. They define the AssemblyKeyFile
attribute so that you can install this assembly into the Global Assembly Cache
(GAC). Although installing these types of assemblies into the GAC is not strictly
necessary, it often helps you deploy your applications. Installing assemblies into
the GAC makes considerably more sense for LCE components than for other

Chapter 6: Events 93

094835-2 Ch06.F 8/31/01 8:10 AM Page 93

components, particularly for those assemblies that contain subscriber components.
Because the publisher does not necessarily know about the event’s subscribers, it
does not make sense to assume that you are able to deploy the subscriber assembly
into the same directory as the publisher or event class.

Below the declaration of the namespace MyEvents, you can see the definition of
the event class. The event class, MyEventClass, is decorated with the
System.EnterpriseServices attribute EventClass. The EventClass attribute
tells the installation utility that MyEventClass should be installed as an event class,
not just as a regular component.

The next class I have defined is the subscriber class called MySubscriberClass.
This class is simply a normal ServicedComponent type that implements the shared
interface, IMyEvents. When this class is compiled and registered, you are able to
create a subscription for the event class. Subscriptions for the event class must be
created manually; there is no attribute support for adding a subscription to an
event.

Finally, I have defined an interface called IMyEvents. Both the subscriber and
event classes implement the interface. This interface is really the glue that binds the
event class and the subscriber.

Compile and register this assembly just as you do any other assembly containing
ServicedComponents. The Regsvcs.exe tool is smart enough to know, based on
the EventClass attribute, that the event class must be installed as an event class,
not as a regular COM+ component. Figure 6-4 shows what these classes look like in
the Component Services Explorer once they are registered. Notice that the
IMyEvents interface is listed under the “Interfaces” folder for each component.

Figure 6-4: Interface listing for subscriber and event class

94 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 94

Figure 6-5 shows the Advanced tab for the event class. I have included this illus-
tration to show you that the event class has indeed been installed as an event class.
Notice that the Allow in-process subscribers attribute has been set by default.

Figure 6-5: MyEventClass LCE properties

Creating Subscriptions by Using
Component Services Explorer
Now that you have an event class and subscriber component, the next step is to
create the subscription. In Figure 6-4, both classes have a folder called
Subscriptions. To create a subscription, right-click the Subscriptions folder for the
subscriber component, and click New Subscription. This starts the COM+ New
Subscription Wizard, as seen in Figure 6-6. This figure shows all of the interfaces
the subscription class supports. The only interface you are interested in here is
IMyEvents.

The next step toward creating a subscription is to select the event class. After
selecting the interface to be used to subscribe to the event, choose the event class to
which you want to subscribe. Figure 6-7 shows the MyEventClass event class listed
as the only available event class that supports the IMyEvents interface. Notice that
the details box is checked. When you check this box, you are able to see the CLSID
and the description for the event class.

The last step in adding a subscription is to give the subscription a name and,
optionally, enable it. In figure 6-8, I have checked the “Enable this subscription
immediately” check box. Unless this box is checked, events are not sent to this sub-
scriber component. The name for the subscription is simply a user-friendly name
you give it.

Chapter 6: Events 95

094835-2 Ch06.F 8/31/01 8:10 AM Page 95

Figure 6-6: COM+ New Subscription Wizard

Figure 6-7: Selecting the event class

Figure 6-8: Enabling the subscription

96 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 96

Once the subscription is created, you are able to see it listed in the Subscriptions
folder. Figure 6-9 shows the new subscription called MySubscription listed in the
Subscriptions folder for the subscriber class.

Figure 6-9: Subscriptions listing for subscriber component

.NET Framework EventClass Attribute
Let’s take a closer look at the EventClass attribute. As you learned previously, this
attribute comes from the System.EnterpriseServices namespace. Table 6-1 lists
the properties this attribute supports.

TABLE 6-1 EVENTCLASS ATTRIBUTE PROPERTIES

Property Data Type Description

AllowInProcSubscribers Bool This property allows or disallows subscribers
to run in process with the publisher.

FireInParallel Bool Set to true, this property allows the event
system to notify subscribers of events in an
asynchronous fashion.

PublisherFilter string This string consists of the publisher filter
class’s globally unique identifier (GUID).

Chapter 6: Events 97

094835-2 Ch06.F 8/31/01 8:10 AM Page 97

If you take the preceding event class and define these properties, you get some-
thing similar to the following code. For the sake of clarity, I have included only the
code for the event class.

[
EventClass
(
AllowInProcSubscribers=true
FireInParallel=true

)
]
public class MyEventClass : ServicedComponent, IMyEvents
{
public void PrintName() {}

}

Once this class is compiled and registered, you can see that the attributes get
applied by looking at the Advanced tab for the event class. Figure 6-10 shows the
Fire in parallel and Allow in-process subscribers check boxes checked.

Figure 6-10: EventClass attribute enables LCE properties

Using Transactions with Events
In the final section of this chapter, you learn to write a publisher, event class, and
subscriber that use transactions. The purpose of this section is to demonstrate how
other services of COM+ are used with events.

98 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 98

To demonstrate how transactions can be used with events, I will modify the pre-
ceding code example to include a transactional ServicedComponent class called
MyTransactionRoot. This class is in charge of starting the transaction (through the
TransactionOption.Required property) and initiating the event by calling the
PrintTransactionId method on the event class. This method prints out the trans-
action ID for the current transaction. Before the transaction root component starts
the event, it prints out its own transaction ID. The definitions of all the classes and
the shared interface are shown in Listing 6-3.

Listing 6-3: Using transactions with events

[EventClass]
public class MyEventClass : ServicedComponent, IMyTransactionEvents
{
public void PrintTransactionId() {}

}

[Transaction(TransactionOption.Supported)]
public class MySubscriberClass : ServicedComponent,

IMyTransactionEvents
{
public void PrintTransactionId()
{
Console.WriteLine(ContextUtil.TransactionId.ToString());

}
}

[Transaction(TransactionOption.Required)]
public class MyTransactionRoot : ServicedComponent
{
public void StartTransaction()
{
Console.WriteLine(ContextUtil.TransactionId.ToString());
MyEventClass ec = new MyEventClass();
ec.PrintTransactionId();

}
}

public interface IMyTransactionEvents
{
void PrintTransactionId();

}

Chapter 6: Events 99

094835-2 Ch06.F 8/31/01 8:10 AM Page 99

In this example, the transaction root component – MyTransactionRoot – acts as
the publisher. Because this component is activated always in a transaction, the
transaction is propagated to the subscriber components.

In fact, if you write a console application that instantiates an instance of the
transaction root component and you call the StartTransaction method, you see
output similar to the following.

654675f8-8b76-45f8-9d70-d17bc59046ad
654675f8-8b76-45f8-9d70-d17bc59046ad

As you can see, the root component and the subscriber component both display
the same transaction ID, meaning they are both running in the same transaction.

Perhaps the subtlest issue here is the lack of declarative transaction support for
the event class. Notice that this class is not declared as transactional. Because the
event system — not the event class — forwards events to subscribers, the event sys-
tem can propagate the transaction from the root to the subscribers. Of course, all of
the other rules such as Just In Time Activation and the behavior of the transaction
attribute apply to the publisher and subscriber.

Summary
In this chapter, you get an introduction to both the .NET event model and the
COM+ event model. Trying to understand how events work can be rather tricky, so
don’t get discouraged!

These two types of events are not competing models but complement each other.
In fact, the .NET event model is used heavily throughout .NET user interface appli-
cations such as WinForms and ASP .NET pages. There is a time and place for every-
thing. This is certainly true in regards to events. Tightly coupled events work well
in an application such as a .NET Windows Forms application or an ASP .NET appli-
cation. Distributed applications, however, benefit more from the loosely coupled
event architecture provided by COM+. In this chapter I compared the COM+ LCE
architecture and the TCE architecture used in .NET Windows Forms. I also demon-
strated how the attributes and classes of the System.EnterpriseServices name-
space provide you with a means to write your own LCE event classes and
subscribers. By now, you should know how to implement your own event classes
and subscribers and where and when to use them.

100 Part II: COM+ Core Services

094835-2 Ch06.F 8/31/01 8:10 AM Page 100

Chapter 7

Object Pooling
IN THIS CHAPTER

� Understanding object pooling

� Requirements for object pooling

� Object pooling in C#

WHEN I FIRST HEARD that the .NET Framework was going to support COM+ object
pooling, I was excited to say the least. Previously, object pooling was the domain of
the C++ programmer. No longer! With the introduction of .NET and the
ServicedComponent, object pooling is now in the arsenal of Visual Basic develop-
ers and, of course, C# developers.

In this chapter, you learn what object pooling is all about and what requirements
a poolable object must meet. As you will see, object pooling should not be imple-
mented for every object. In some cases, however, object pooling can significantly
improve scalability.

Understanding Object Pooling
Simply stated, an object pool is a collection of preinstantiated objects that share the
same CLSID. By preinstantiated, I mean that the objects’ constructors have already
been called and are ready for a client to use them. An object pool is homogeneous
because each object is a new instance of the same object; thus, each object in the
pool has the same CLSID. Figure 7-1 shows the CLSID for a managed component
from Component Services Explorer.

Incidentally, the Regsvcs registration tool generates CLSIDs automatically for
you. Regsvcs generates a CLSID based on a hash of the class’s method signatures,
the assembly’s version, and (if available) the assembly’s strong name. It is possible
to create and install two unique classes by changing the version of the assembly, as
seen in Figure 7-2.

101

104835-2 Ch07.F 8/31/01 8:10 AM Page 101

Figure 7-1: CLSID for a ServicedComponent

Figure 7-2: Two CLSIDs for a ServicedComponent class

Although these two classes differ only by their revision numbers (1.0.1.1 and
1.0.1.2), each gets its own CLSID. Assuming these are pooled components, COM+
maintains two unique pools.

It is possible to override automatic CLSID generation. The System.Runtime.
InteropServices namespace provides an attribute called GuidAttribute that can
be used to decorate a class, assembly, interface, enumeration, structure, or delegate.
The code example that follows demonstrates the use of this attribute.

using System;
using System.EnterpriseServices;

102 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 102

using System.Runtime.InteropServices
[GuidAttribute(“24B7B5C4-CBEA-4668-AF67-1E3D44F87A68”)]
public class CPooledObject : ServicedComponent {}

This GuidAttribute attribute has one constructor that takes the GUID in the
form of a string. Visual Studio comes with a utility called GuidGen.exe that you
can use to create your unique GUID.

Most of the attributes in the .NET Framework allow you to omit the “Attribute”
at the end of the name of each attribute. Generally, this is not a good idea for the
GuidAttribute attribute. The System namespace contains a Guid structure. If you
are using the System namespace, and you are if you are implementing
ServicedComponents, you run into a naming conflict.

When to Use Object Pooling
So when do you use object pooling? If it improves scalability, shouldn’t you use it
for every ServicedComponent? Well, not exactly. Here are a few guidelines that
should help you decide when to use object pooling:

� Use object pooling when your object needs to acquire expensive resources
such as database connections.

� Use object pooling when your method calls do a small amount of work,
then exit and deactivate the object (that is, set the done bit = true).

� Use object pooling when you need to limit the number of concurrent con-
nections to resources.

� Do not use object pooling when your methods take more time to complete
than constructing your objects takes.

� Do not use object pooling for objects that hold client state (after a method
call).

Object pooling is intended to spread the cost of an object’s initialization across
multiple clients. The first client that creates a new object takes a performance hit,
but as soon as that client releases the object, the object returns to the pool. Without
having to wait for the object to be constructed, the next client that needs an instance
of the object gets the instance the first client creates. This is the basis of the first rule
in the preceding list. Figure 7-3 demonstrates the concept behind this rule.

The second and third rules of the preceding list go hand in hand. If your compo-
nent implements only methods that perform a granular amount of work relative to
the amount of work performed in constructing the object, your object is a good
candidate for pooling. To say it another way, if most of the work a component per-
forms is generic to any client, it may make sense to do the client-independent work
in the object’s constructor. This allows the component’s methods to do a relatively
small amount of work. Also, this gives you the opportunity to spread the client-
independent work performed in the constructor across multiple clients.

Chapter 7: Object Pooling 103

104835-2 Ch07.F 8/31/01 8:10 AM Page 103

Figure 7-3: Sharing the cost of a database connection

In some scenarios, it may make sense to use object pooling to limit the number
of clients that can concurrently access a given resource (a database, for instance).
For example, if you have only a 100 concurrent connection license, you can con-
figure your object pool to allow only 100 objects to enter it. The trick here, of
course, is to ensure that your clients can get access to the database through the
components in your pool only.

When you get into the requirements section later in this chapter, you see why
the fifth rule of the preceding list is so important. Poolable components that hold
state can be dangerous for a number of reasons.

Object Pooling Attributes
An object pool has three attributes defined by using either the Component
Services Explorer or by using the ObjectPooling attribute in the System.
EnterpriseServices namespace. The attributes are as follows:

� MinPoolSize

� MaxPoolSize

� CreationTimeout

When a COM+ application — be it a library or server application — starts up,
COM+ instantiates as many components as the minimum pool size requires. As
client requests come in, these initial few objects are served to clients. For example,
if the minimum pool size is 2, the first two requests are served from objects in the
pool. As additional requests for objects come in, COM+ creates new instances up to
the maximum pool size. Once the maximum number of objects has been created,
client requests are queued until an object becomes available. (Incidentally, you can
use the MaxPoolSize attribute to control how many concurrent connections you
have to a database, just as we discussed in the preceding section.) Clients wait for

Client 1
1. Create a new PooledServiceComponent 2. Initialize the component and

open database connection

COM+ Object Pool

Client 2
6. Create a new PooledServiceComponent

7. Object instance is returned to Client 2
without requiring that a new object be created

3. Return instance to client

PooledServiceComponent
(Instance 1)

4. Client 1 calls method

5. Object deactivates
after method call and

returns to the pool

104 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 104

an object to be returned to them until the creation timeout value has been reached.
An object creation request can time out for the following reasons:

� Object construction time is longer than the creation timeout limit.

� A client’s request sits in the queue longer than the timeout value does.

Figure 7-4 demonstrates how COM+ uses these attributes to control the pool.

Figure 7-4: Controlling object pooling

Often, determining the optimum level for these settings is a matter of trial and
error. It ultimately comes down to how your application works. Here are some
things you want to consider when trying to determine the minimum and maximum
pool sizes and the creation timeout:

� How long do my methods take to return?

� How long does it take to construct my object?

� How many creation requests can I expect during the busiest times?

� Are my clients doing other work between calls of my methods?

Client 1
Create new CFoo

CFoo

COM+ Object Pool
Max Pool Size = 3

Minimum Pool Size = 2
Creation Timeout = 20 ms

COM+ will create 2 new
components when the

application starts. This is
the minimum pool size.

COM+ will create an
additional component to
service Client 3. Now the

pool size has reached
the max.

Client 4 will time out
after 20 milliseconds

unless one of the other
3 clients releases its

objects.

Client 2
Create new CFoo

CFoo

Client 3
Create new CFoo

CFoo

Client 4
Create new CFoo

Chapter 7: Object Pooling 105

104835-2 Ch07.F 8/31/01 8:10 AM Page 105

I strongly suggest running some tests to determine how long it takes to construct
your objects and how long it takes to run your most expensive method calls.
Essentially, you want to set your creation timeout to be at least as long as it takes
to construct one of your objects under the worst possible circumstances. You
should hope that each client request for an object does not require a new object to
be constructed. Most of the time, you should expect requests to be served from
objects already constructed and added to the pool. A period of time always exists
between your application’s starting up and the pool’s filling to its maximum level.
During this time, new objects need to be constructed, and your clients have to wait
for this. Bear this in mind as you consider the duration of your creation timeout.

The third question in the preceding list should influence your thinking about the
maximum pool size. You want enough objects available to be able to satisfy
requests during the busiest time. The fourth question also should influence the
maximum pool size. If your clients typically do other work between method calls,
you can take advantage of JITA. Just-in-time activation allows multiple clients to
use your component seemingly simultaneously. You explore just-in-time activation
and object pooling in greater depth in the next section.

Object pooling represents one of the classic tradeoffs in computer science. When
you use object pooling, you are sacrificing memory for performance. The larger
your pool size, the more memory you are consuming, and the more clients you can
satisfy. At some point, you see the benefits of pooling decrease as you allow your
pool to grow. This is why it is so important to stress-test your applications before
they go into use. Proper testing gives you a good indication of what your attributes’
setting should be.

Object Pooling and Scalability
Developers and architects implement object pooling because they hope doing so
will give them greater scalability. Unfortunately, scalability is often misused and
misunderstood. Take a minute to look at what scalability means.

Scalability is the impact that the addition of resources and users has on an appli-
cation’s throughput. An application is scalable if you can add resources as user load
increases and can have a positive effect on throughput.

With COM+ object pooling, you can administratively add components (that is,
resources) by increasing the minimum and maximum pool sizes as your user load
increases. The more components you allow to be added to your pool, the more
clients you can service.

Just-in-time activation (JITA) has an interesting effect on scalability for a
poolable object. Remember that JITA allows an object to deactivate after a method
call and to activate upon the next method call. Because a client does not have con-
trol over the component between method calls, the component is freed back into
the pool. Once the component goes back to the pool, it becomes available for other
clients. Figure 7-5 shows how JITA allows two clients to use the same instance of
an object virtually simultaneously.

106 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 106

Figure 7-5: How JITA allows scalability in an object pool

In Figure 7-5, client 1 obtains an instance of class CFoo from the pool and calls
one of CFoo’s methods. When the method returns, the object is deactivated and
returned to the pool. At this time, client 1 thinks it still has a valid reference to
CFoo. Next, client 2 requests an instance of CFoo. Because an instance of this class
has been released back to the pool, client 2 gets the same instance of CFoo that
client 1 thinks it has. At this exact moment, both clients think they have a valid
reference to the same instance of CFoo. This is scalability. By using one object to
service multiple clients, you can achieve scalability in your applications. As you
add objects to the pool, the client base you can support should increase by some
factor greater than the number of objects you are adding.

Admittedly, the scenario demonstrated in Figure 7-5 is a rather extreme case.
Normally, you do not have only two clients and one object. Also, a client does not
necessarily get back the same instance of an object it was previously using.
However, the effect of object pooling on scalability remains the same.

I should clear up a point in the preceding scenario. In Figure 7-5, you see the
COM+ object pool divided into two sections: objects in use and available objects.
Essentially, objects in use are objects in which a client is executing code. Available
objects represent objects a client can access. The pool size is always the total num-
ber of objects in use plus those available for use. The maximum pool size never
exceeds this value.

Object Pooling and Nondeterministic Finalization
Keep in mind that although ServicedComponents take advantage of COM+, they
still run inside the Common Language Runtime (CLR). This means that pooled
objects are still subject to Garbage Collection, which, as you learn in Chapter 1, can
occur at any time. Normally, if a class uses expensive resources (for example, data-
base connections, file handles, or network connections), some kind of a Close or
Dispose method should be implemented. However, this solution does not fit well
with poolable objects. Because the purpose of writing a poolable object is to spread
the cost of acquiring these types of resources across multiple clients, it does not
make sense to dispose of these resources after each client is done with the object.
The only practical option (that I can think of, at least) is to free these resources in
the class’s finalizer.

Client 1
1. Create new CFoo

CFoo

COM+ Object Pool

Objects In Use

CFoo

Available Objects

Client 2

5. Create new CFoo

3. Client makes method call
and object deactivates

2. Instance of CFoo is
returned to the client

6. CFoo returned to Client 2

4. When CFoo
deactivates, it is

returned to the pool

Chapter 7: Object Pooling 107

104835-2 Ch07.F 8/31/01 8:10 AM Page 107

Requirements for Poolable Objects
COM+ insists that poolable objects meet certain requirements. Fortunately, the .NET
runtime meets most of these requirements for us. Four requirements all objects
must meet if they are to be pooled are the following:

� They must be stateless.

� They must support JITA.

� They must support aggregation.

� They must not have affinity to any thread.

Overall, you understand the first two requirements. Statelessness and support for
JITA really go hand in hand. I should point out that these requirements are so not
much requirements as they are recommendations (very strong recommendations). It
is technically possible to write a pooled component that is not stateless and does
not support JITA. However, unless you have very strong reasons for not making
your components stateless, you should consider these two recommendations a
requirement.

All ServicedComponents support aggregation. As such, this is not something
you need to implement explicitly in your classes. Aggregation involves an inner
component and an outer component morphing together to form one component.
From the client’s perspective, the client is dealing only with one component. COM+
provides an outer component that aggregates the inner component, namely, the
pooled component. When COM+ aggregates a ServicedComponent, it is aggregat-
ing the COM Callable Wrapper (CCW). Remember from Chapter 3 that the CCW is
responsible for managing the transition between the COM runtime and the .NET
runtime. Figure 7-6 shows what a ServicedComponent looks like from the point of
view of aggregation.

Figure 7-6: Aggregating the CCW

The final requirement for pooled components is that they must not have affinity
to any particular thread. Previously in this chapter, you see that multiple clients can
use a single component simultaneously. In this scenario, multiple threads are

CCW ServicedComponent

COM+ Runtime

COM+ Aggregate
for Poolable Objects

.NET Runtime

CCW manages the transition
between COM+ and .NET

108 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 108

accessing the component. Because any thread may access the component, the com-
ponent should not rely on data, such as thread local storage, specific to any thread.
A good example of this is COM+’s Shared Property Manager (SPM). The SPM is a
resource dispenser for a thread’s local storage area of memory. Do not use the SPM
in your pooled components.

Requirements for Transactional Objects
In addition to the requirements mentioned previously, transactional objects must
meet a few additional requirements to be poolable:

� They must manually enlist resources.

� They must turn off automatic enlistment of resource managers.

� They must implement the IObjectControl interface.

In our discussion of transactional objects in Chapter 4, you learn that COM+
provides a service known as Automatic Transaction Enlistment. Automatic
Transaction Enlistment enables resources (database connections) to enlist into a
DTC transaction automatically. Before a database connection can be manually
enlisted into a COM+ transaction, the automatic-enlistment behavior must be dis-
abled. This is the basis of the second rule of the preceding list.

Transactions are relative to a particular context. When you open a database con-
nection in an object’s constructor, there is no active context, and thus no transaction,
for the connection to enlist into. However, if a database connection is opened in a
particular context that has an associated transaction and the database connection
remains open when the object is returned to the pool, the next client that gets that
object may be using a connection that has been enlisted in a different transaction.

To illustrate this point, consider the following scenario depicted in Figure 7-7.
Two clients are transactional (not pooled) ServicedComponents. Each client
requires its own COM+ transaction, and each client represents a unique transaction
root. In addition, each component uses a pooled component that supports transac-
tions. To make the point a little easier to understand, say that your minimum and
maximum pool sizes are 1. The pooled component opens a database connection on
the first call to Activate and does not release the connection until the component’s
finalizer is called. When client 1 calls into the component, the pooled component
takes the following actions:

1. It opens the database connection.

2. It enlists the database connection into the first client’s transaction.

3. It performs some work on the database connection.

4. The method call executes and COM+ returns the component back to the
pool.

5. The client sees there are no errors and commits the transaction.

Chapter 7: Object Pooling 109

104835-2 Ch07.F 8/31/01 8:10 AM Page 109

Figure 7-7: Enlisting pooled objects into a transaction

At this point, the transaction is committed, but the database connection still
thinks the database connection is enlisted in the first client’s transaction. When the
second client makes a call into the component, the database connection is not
reopened, as it has never been closed in the first place. When the pooled component
attempts to do some work on the open connection, an exception is thrown because
the database connection is attempting to operate in a transaction that no longer
exits.

The final rule that a transactional pooled component must follow is to imple-
ment the IObjectControl interface. Managed components that inherit from the
ServicedComponent class do not need to implement the IObjectControl interface
explicitly. A class that inherits from ServicedComponent needs only to override the
virtual methods: Activate, Deactivate, and CanBePooled. Activate and
Deactivate allow you to perform context-specific activation and cleanup work. It
is not strictly necessary to implement these two methods, but it is generally a good
idea. The CanBePooled method, on the other hand, must be implemented. If this
method is not implemented, COM+ assumes that it returns false. Returning false
from CanBePooled dooms a transaction. CanBePooled gives you a good opportu-
nity to check the state of your component. If you determine that your object is no
longer in a consistent state, you can return false from this method, and the object
is not returned to the pool.

Before you go on to the next section, consider one additional feature COM+ pro-
vides for poolable transactional components. COM+ maintains a subpool for trans-
actional components. If a client is involved in a transaction and the client calls into
a pooled component that supports transactions, COM+ examines the object pool to
determine if a component exists that previously has been part of that client’s trans-
action. This feature exists to improve performance. Typically, a transactional com-
ponent that uses another pooled transactional component uses that component in
rapid succession. Because COM+ remembers what transaction a pooled component
previously has been a part of, it can simply return that instance of the component
to the client without having to reinitialize the component into the current transac-
tion. If a pooled component that matches the current transaction is not found,
another component from the pool is returned to the client.

Pooled Component

Client 1
Transaction ID = 1234

Client 2
Transaction ID = 4321

COM+ Object Pool

2. Pooled component opens database connection
with a transaction ID of "1234"

1. Client 1 calls method
on pooled component

3. Method call returns
and component is returned
to the pool

4. Client 2 makes a
method call on the
pooled component

5. Pooled component uses
the previously opened database
connection enlisted under the
transaction ID of "1234"

6. Pooled component throws
an exception, forcing Client 2
to abort its transaction

110 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 110

Object Pooling in C#
In this section, you run an experiment. You write two ServicedComponent classes.
One class is a pooled object; the other is a normal JITA-enabled class. Each of these
classes contains one method — ExecuteCategoryQuery— that performs a simple
select against a database called OfficeMart. You create a console application that
measures how long it takes you to create new instances of these components and to
call the ExecuteCategoryQuery method. Because you are concerned only with
examining the performance benefits that object pooling can provide, don’t worry
about getting a result from your query. Discard query results, and assume your
query is successful if no exceptions have been thrown.

Pooled and Nonpooled Components
Begin this discussion by examining the classes in the ObjectPoolLib namespace in
Listing 7-1. To help you better understand where each framework attribute and
class comes from, each of the following elements contains a fully qualified name-
space.

Listing 7-1: Pooled and Nonpooled Classes

[assembly: System.Reflection.AssemblyVersion(“1.0.1.1”)]
[assembly: System.Reflection.AssemblyKeyFile(“mykey.snk”)]

namespace ObjectPoolLib
{
using System;
using System.Xml;
using System.EnterpriseServices;
using System.Data;
using System.Data.SqlClient;

[
System.EnterpriseServices.ObjectPooling
(
true,
10,
100,
CreationTimeout=1000

)
]
[System.EnterpriseServices.JustInTimeActivation(true)]
[
System.EnterpriseServices.Transaction
(

Chapter 7: Object Pooling 111

104835-2 Ch07.F 8/31/01 8:10 AM Page 111

TransactionOption.NotSupported
)

]
public class PooledObject : System.ServicedComponent
{
private System.Data.SqlClient.SqlConnection _cnn;
private System.Data.SqlClient.SqlCommand _cmd;

public PooledObject() {
_cnn = new SqlConnection(

“server=(local);database=OfficeMart;uid=sa;pwd=”
);

_cmd = new SqlCommand();
_cmd.CommandType = System.Data.CommandType.Text;
_cmd.Connection = _cnn;
_cnn.Open();

}
[AutoComplete]
public void ExecuteCategoryQuery()
{
_cmd.CommandText =
“select CategoryName, Description from Categories”;

_cmd.ExecuteNonQuery();
}

// ServicedComponent virtual functions
public override void Activate()
{
// nothing to do here

}

public override void Deactivate()
{
// nothing to do here

}

public override bool CanBePooled()
{
if (_cnn.State != System.Data.ConnectionState.Open)
{
return false;

}
else
{
return true;

112 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 112

}
}

}
[System.EnterpriseServices.JustInTimeActivation(true)]
[
System.EnterpriseServices.Transaction
(
TransactionOption.NotSupported

)
]
[
System.EnterpriseServices.ConstructionEnabled
(
Default=”server=(local);database=OfficeMart;uid=sa;pwd=”

)
]
public class NonPooledObject : ServicedComponent
{
private string _sConnection;
private System.Data.SqlClient.SqlConnection _cnn;
private System.Data.SqlClient.SqlCommand _cmd;

public NonPooledObject()
{
// nothing to do here

}
[AutoComplete]
public void ExecuteCategoryQuery()
{
_cnn = new SqlConnection(_sConnection);
_cmd = new SqlCommand();
_cmd.CommandType = CommandType.Text;
_cmd.Connection = _cnn;
_cmd.CommandText =
“select CategoryName, Description from Categories”;

_cnn.Open();
_cmd.ExecuteNonQuery();
_cnn.Close();
_cmd.Dispose();

}

// ServicedComponent virtual functions
public override void Activate()
{

Chapter 7: Object Pooling 113

104835-2 Ch07.F 8/31/01 8:10 AM Page 113

// nothing to do here
}

public override void Deactivate()
{
// nothing to do here

}

public override bool CanBePooled()
{
return false;

}

public override void Construct(string s)
{
_sConnection = s;

}
}

}

The first two lines of Listing 7-1 should look familiar. They define the assembly
version and the key file you use to sign the assembly. Remember that you need to
add a key file to your assembly so that you can give it a strong name and install it
into the Global Assembly Cache. It is not absolutely necessary to sign your assem-
bly. I personally prefer to sign my assemblies that run in COM+ server applications.
Because server applications run as the dllhost.exe process, the .NET runtime’s
assembly resolver looks for the assembly in \winnt\system32, as this is where
dllhost.exe has been loaded. Unless you want to install your server application
assemblies under \winnt\system32, you need to add them to the Global Assembly
Cache or define a location for them in your application configuration file. It is
really just a matter of personal preference.

The first class defined in the namespace is PooledObject. The first attribute that
decorates this class is ObjectPooling. Tables 7-1 and 7-2 list the constructors and
properties, respectively, for the ObjectPooling attribute.

TABLE 7-1 OBJECTPOOLING ATTRIBUTE CONSTRUCTORS

Constructor Signature Arguments Description

ObjectPooling() no arguments Enables object pooling. Default minimum
and maximum pool sizes are 0 and
1048576, respectively. Default creation
timeout is 60000 ms.

114 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 114

Constructor Signature Arguments Description

ObjectPooling(bool) enabled Either enables (true) or disables (false)
object pooling. Defaults are the same as
the preceding.

ObjectPooling minimum, Enables object pooling with the minimum
(int, int) maximum pool size and maximum pool sizes. Default creation

timeout is 60000 ms.

ObjectPooling enabled, minimum,
(bool, int, int) maximum Enables or disables object pooling with

the minimum and maximum pool sizes.

TABLE 7-2 OBJECTPOOLING ATTRIBUTE PROPERTIES

Property Name Data Type Description

CreationTimeout int Specifies the time in milliseconds a client waits for an
object to be returned from a call to the C# keyword
new

Enabled bool Specifies whether object pooling is enabled

MaxPoolSize int Maximum number of objects COM+ allows in the pool

MinPoolSize int Minumum number of objects in the pool at any given
time

When the application first starts, COM+ creates MinPoolSize number of objects.
You have examined the next two attributes — JustInTimeActivation and

Transaction— in previous chapters, so we don’t need to go into them here.
In the constructor for the PooledObject class, I am initializing instances

of qlConnection and SqlCommand objects. The types in the System.Data.
SqlClient namespace are intended for use with Microsoft SQL Server databases
only. If you need to access another database (such as Oracle) that supports
Microsoft’s OLE DB specification, you should use types from the System.Data.
OleDb namespace.

Probably the most important task you perform in the constructor is opening the
database connection. This allows you to share the connection with multiple clients.
Opening the connection in the constructor is about the only thing that differenti-
ates the PooledObject and NonPooledObject classes.

Chapter 7: Object Pooling 115

104835-2 Ch07.F 8/31/01 8:10 AM Page 115

In Listing 7-1 you see the ExecuteCategoryQuery method defined below the
definition of the constructor. This method is decorated with the AutoComplete
attribute. You need to set the AutoComplete attribute for this method because you
want the object to be deactivated after the method call and returned to the pool.
Remember that this attribute automatically sets the object’s done bit to true when a
thread enters the method. The implementation of this method sets the command
text of the SqlCommand class to your SQL select statement and executes select
against the database. Because you are not concerned with getting data back from
the database, use the ExecuteNonQuery method, which, in this case, discards query
results.

The last three methods in this class represent the IObjectControl interface
methods. The ServicedComponent class defines these methods as virtual.
Because the object inherits from the ServicedComponent class, you do not need to
implement IObjectControl.

C# supports both the virtual and abstract keywords. These keywords

are close cousins of each other, but they do implement slightly different

behaviors. The virtual keyword can be used to decorate methods and

properties in a class. The abstract keyword, on the other hand, can be

used to decorate classes as well.The child class does not necessarily need to

implement methods defined as virtual. This is the case for the methods

Activate,Deactivate, and CanBePooled in the ServicedComponent
class.The child class must implement abstract methods.

Because you are not doing any context-specific work in the NonPooledObject
class, you have nothing to do in the Activate and Deactivate methods. They are
here to show you how they are declared in a ServicedComponent-derived class.
The CanBePooled method shows how you can use it to examine the state of the
object and to decide whether or not to return it to the pool. In your example, look
to see if the connection is still open before returning it to the pool.

The NonPooledObject class comes next in the code listing. The work this class
performs is essentially the same as the work done in the PooledObject class. You do
only two things differently in the NonPooledObject class. First of all, because the
NonPooledObject class is not a pooled component, you do not open the connection
in the constructor. Instead, you open it in the ExecuteCategoryQuery method.

Also notice that this class contains a new attribute: ConstructionEnabled. This
attribute allows COM+ to pass in a string when your component is activated. This
string can be anything you want, but in your case, you are passing in the connec-
tion string for your database. The Default property defines the construction string
added to the catalog when you register your component. Figure 7-8 depicts the
Activation tab for this component. Notice that the “Enable object construction”
check box is checked and the connection string has been added to the text field.

116 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 116

Figure 7-8: Activation tab for a construction enabled component

Override the virtual method, Construct, from the ServicedComponent class so
you can get access to the constructor string. Normally, if you are developing a
unmanaged component, you have to implement the IObjectConstruct interface
to get this functionality. But the ServicedComponent class takes care of that for
you. COM+ calls the Construct method before it calls the Activate method.

I have not implemented the ConstructionEnabled attribute in the
PooledObject class, as you need the connection string to be in the class’s con-
structor. Because COM+ constructs the object before any calls to Activate or
Construct occur, you are not able to take advantage of this feature.

Analyzing the Client
The code for your test application is shown in Listing 7-2. Admittedly, this is a
rather simplified test, but it helps to demonstrate the benefits of object pooling.

Listing 7-2: Object Pooling Client

using System;
using ObjectPoolLib;
static void Main(string[] args)
{

int i = 0;
long lStart;
long lEnd;

lStart = System.DateTime.Now.Ticks;
for (i = 0; i < 1000; i++)

Chapter 7: Object Pooling 117

104835-2 Ch07.F 8/31/01 8:10 AM Page 117

{
ObjectPoolLib.PooledObject po = new

ObjectPoolLib.PooledObject();
po.ExecuteCategoryQuery();

}

lEnd = System.DateTime.Now.Ticks - lStart;
Console.WriteLine(“Results for PooledObject: “ + lEnd.ToString());

lStart = System.DateTime.Now.Ticks;
for (i = 0; i < 1000; i++)
{
ObjectPoolLib.NonPooledObject npo = new
ObjectPoolLib.NonPooledObject();

npo.ExecuteCategoryQuery();
}

lEnd = System.DateTime.Now.Ticks - lStart;
Console.WriteLine(“Results for NonPooledObject: “ +

lEnd.ToString());
Console.WriteLine(Console.ReadLine());
}

This test application creates 10 instances of each of the pooled and nonpooled
classes and determines the elapsed time that occurs when the method is called. The
elapsed time is determined by computing the difference between the number of
ticks before and after the loop. Incidentally, System.DateTime.Now.Ticks repre-
sents the number of hundred-nanosecond intervals that have occurred from
January 1, 2001, at 12:00 a.m.

When I run this on my machine, I get the following output:

Results for PooledObject: 157726800
Results for NonPooledObject: 216110752

The results you get may differ somewhat depending on your system’s configura-
tion. The point here is to show how much faster pooled components can be for this
type of component. As you can see from the test, object pooling can provide sig-
nificant benefits.

Summary
In this chapter, you have delved into the world of object pooling. You have seen
how the ServicedComponent class and the ObjectPooling attribute are used to
write a poolable object. No longer do you have to write these classes in C++.

118 Part II: COM+ Core Services

104835-2 Ch07.F 8/31/01 8:10 AM Page 118

You have gained some criteria to apply to an object when you try to decide
whether it should be pooled or not. Remember that the more generic your object is,
the more likely it is a candidate for the object pool.

Finally, you have seen how pooled objects compare with nonpooled objects. You
have seen a rather dramatic increase in performance for the pooled component. I
hope this whets your appetite for pooled components.

Chapter 7: Object Pooling 119

104835-2 Ch07.F 8/31/01 8:10 AM Page 119

104835-2 Ch07.F 8/31/01 8:10 AM Page 120

Chapter 8

Queued Components
IN THIS CHAPTER

� Making the case for queued components

� Introducing Microsoft Message Queue

� Understanding queued components in COM+

� Using other COM+ services along with queued components

� Developing queued components in C#

IT HAS OCCURRED TO me over the years that when I need to contact someone, either
by phone or e-mail, I go through a process to determine the best way to reach the
person. If I cannot proceed with my day without talking to the person, I phone or
page him or her. If, however, I can get by without the person’s immediate attention,
I usually send an e-mail. For me, at least, the phone provides synchronous commu-
nication, but e-mail provides asynchronous communication.

In the world of remote method calls, queued components provide a way for a
client to send a message that contains method calls to a remote component.
Similarly to the way I use e-mail, you can use queued components to provide asyn-
chronous communication.

In this chapter, you see how queued components stack up against other forms of
remote method calls such as Remote Procedure Calls (RPCs) and the Simple Object
Access Protocol (SOAP). Also, you encounter some criteria to use when trying to
decide between these two method calls.

Because Microsoft Message Queue (MSMQ) is the underlying transport mecha-
nism behind queued components, you receive an introduction to its features and
architecture. This is by no means a complete explanation of the features of MSMQ,
but you explore the relevant features as they pertain to queued components.

In the last three sections of this chapter, you learn the architecture of queued
components and some of the subtle issues that arise when designing these types of
components. Some of these design issues come into play when other services of
COM+, such as security, must be used. In the final section, you write several queued
components. You learn to write a basic queued component by using the .NET
Framework and C#. From there, you move forward to more advanced techniques,
such as combining queued components with loosely coupled events.

It’s fun stuff, so get ready!
121

114835-2 Ch08.F 8/31/01 8:10 AM Page 121

Making the Case for Queued
Components
For years, developers have been using various technologies to transport their
method calls across the network to remote components. Some of these technolo-
gies, such as RPC DCOM, which uses RPC under the covers, provide synchronous
communication. When a client instantiates a component, the instantiation request
is made to some form of proxy component on the client, which then forwards the
request to the server hosting the component. At the server end, the request is picked
up, and the component is instantiated. From that point on, as each method or prop-
erty is set on the remote component, the call goes out across the network, and it is
picked up on the other end by the component. Each time the client makes a call, it
waits for the remote component to respond. The more method calls a client makes,
the more network traffic and the slower the application. If you combine a chatty
client with a slow network, you are likely to get a frustrated user.

Even newer protocols such as SOAP behave in a similar fashion to RPC. SOAP
uses HTTP as its transport mechanism. HTTP is, for all purposes, a request-response
type of protocol. A SOAP client sends a method call in the form of an HTTP request
to some end point on a Web server. The end point can be almost anything, but often
it is an Active Server Page or an ISAPI extension DLL. After the client sends its
request to the Web server, it blocks as it waits for the Web server’s response.

Both of these types of method invocations — RPC and SOAP — have the same
inherent limitations:

� They are unable to guarantee delivery of a method call.

� The client must wait for each method call across the network to return.

If the client makes a method call to a remote component and the server that
hosts the component is down, the client has no way to ensure that the call succeeds.
In this type of situation, the client has only a couple of options: the client can keep
retrying the method call or give up. Either of these options can be rather frustrating
for the user.

By saying that RPC and SOAP are synchronous protocols, I mean that method
calls are made one after the other. Each time the client calls a method, a round trip
to the server is required to send parameters and to receive a return value. While all
this is occurring, the client must wait for the call to return. If you have a slow or
unreliable network, this can greatly slow down your application.

Products such as IBM’s MQ Series and MSMQ are designed to alleviate these
problems. These products provide two big benefits: asynchronous messaging and
guaranteed delivery. Both of these products ship with COM and the procedural API,
which developers use to send and receive messages to and from computers. I am
not going to demonstrate the use of these APIs in this chapter, but here is a run-
down of the tasks you typically need to perform when writing queued applications:

122 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 122

1. Create a public or private queue (administratively or programmatically).

2. The sender opens the queue, specifying whether to peek at the message,
read it, or send it. The share level of the queue is determined at this time.

3. The sender creates the message to be sent on the queue. Properties such as
the body of the message and priority are set at this time.

4. Once the message is configured, the sender sends it to the appropriate des-
tination queue.

5. The receiver opens the queue.

6. The receiver either peeks at the queue or reads the message.

Admittedly, this is an oversimplification of the process, but I think you get the
idea of how most queued applications work. This is roughly the same scenario that
occurs when you use queued components. However, queued components hide most
of this from you. As you might guess, the fact that queued components hide a cer-
tain amount of complexity comes at the cost of flexibility. Some tasks, such as
peeking at messages in the queue, cannot be performed if you are strictly using
queued components.

Queued components provide you with the typical features you expect from a
message queue, such as guaranteed delivery and asynchronous processing. Also,
queued components hide the grungy queue communication work you perform if
you are using the MSMQ COM API.

Queued components are particularly well suited to provide several benefits over
synchronous method calls:

� Availability and lifetime of the component

� Scheduling of workload

� Reliability of method calls

� Scalability

Because the lifetimes of the client and the component do not need to overlap,
clients are able to operate independently of the components they are calling. This
has benefits if the server hosting the component is unavailable or if the network
between the client and component is unavailable. In the event of server down time,
calls from the client can be queued and stored until the hosting server is back up
and running. This has benefits also for disconnected clients such as laptops and
handheld devices. Applications running on these types of devices can continue to
function while disconnected from their networks.

The fact that the client and component lifetimes do not need to overlap enables
you to schedule when the component should do its work. As you see later in this
chapter, queued components must be configured as a server application. This server
application must be running in order for the component to process method calls.

Chapter 8: Queued Components 123

114835-2 Ch08.F 8/31/01 8:10 AM Page 123

Queued components allow you to specify when the server application
(dllhost.exe) runs. This schedule can be set to run the application during the
hosting server’s less busy hours.

When queued-component method calls are made across the network, MSMQ
uses transactions to deliver the messages. On the component side, messages are
read from the queue in a transactional manner. These transactions are not neces-
sarily COM+ transactions, but they benefit from many of the same features. If a
queued component reads a message from the queue and an error occurs, the read
rolls back, and the message returns to the queue. All this adds up to a much more
reliable delivery mechanism than you get from nonqueued method calls.

The final benefit — scalability — is perhaps the biggest, at least in my mind. First,
because the client does not block during each method call, it is able to make many
calls in rapid succession and to move on to the next task. The client, and ultimately
the user, does not have to wait for method calls to be transported over the network
and received by a remote component that may or may not be available. Second,
because the server process, dllhost.exe, can be scheduled to process messages
during off-peak hours, the server hosting the component can have more resources
available during peak times. All of this amounts to the application’s being able to
do more work at a faster rate.

Introduction to Microsoft
Message Queue
Understanding how queued components work is hard if you do not understand the
basics of MSMQ. It is even harder to diagnose problems when they occur in your
applications if you are not at least familiar with the underlying transport mecha-
nism. Take a look at the components that make up an MSMQ network.

Installing MSMQ
Windows 2000 Server provides MSMQ 2.0 as a core component of the operating
system. You have the option of installing MSMQ when you install the operating
system or anytime thereafter. MSMQ is not installed by default.

MSMQ can be installed in either a Windows 2000 workgroup or a Windows
2000 domain. MSMQ is tightly integrated with Windows 2000 Active Directory. If
you wish to gain Active Directory support, install MSMQ on a domain controller.
MSMQ extends the Active Directory schema to hold queue configuration and status
information.

The workgroup installation option is somewhat more limiting. For instance, only
private queues can be used in a workgroup configuration. In addition, routing
servers cannot be used with the workgroup configuration. Integrating with Active
Directory allows you to use internal certificates to authenticate messages. Because
internal certificates come from Active Directory, this option is not available in the

124 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 124

workgroup installation. External certificates are the only option for a workgroup
installation. External certificates come from an outside certificate authority.
Fortunately for queued component developers, you can still use your components
in a workgroup installation.

Depending on whether you are installing MSMQ on a client, a domain controller,
or a member server, you have a number of options to choose from. For servers, you
have the option of installing MSMQ as a routing server or as a regular server that
has public and private queues. A routing server’s job is to take messages from
clients and to move them to their final destination queues. The routing server is not
responsible for processing incoming messages unless those messages are for one of
its own queues. For performance reasons, Microsoft does not recommend installing
a routing server on a domain controller. Routing servers should be installed on
member servers.

The client can be an independent or dependent installation. To send messages,
dependent clients must be connected to the network. Workstations wired to the
local network are good candidates for dependent clients. The only exception to this
is domain controllers. MSMQ cannot be installed on a domain controller as a
dependent client. Independent clients, on the other hand, do not have to be con-
nected to the network to send messages. As applications running on independent
clients send messages, MSMQ stores those messages locally until the client recon-
nects to the network. Once the client reconnects, messages are sent accordingly.
Laptops and handheld devices are good candidates for independent clients. These
mobile devices are not always connected to the network when they are being used.
Independent-client installations allow users to use their applications as if they were
connected to the network. The next time users connect to the networks, messages
can be sent and their data can be processed.

Once MSMQ is installed into a domain, it can be administered by using the
Computer Management Console. Figure 8-1 shows where you can find MSMQ
under the Services and Applications node. This snap-in is enabled for only MSMQ
installations in a domain.

Understanding Queues
Queues are similar to a mailbox. Just as you use a mailbox to send and receive mail,
applications use queues to send and receive messages. In MSMQ, two categories of
queues exist — application queues and system queues. Application queues can be
any of the following types of queues:

� Message queues

� Administration queues

� Response queues

� Report queues

Chapter 8: Queued Components 125

114835-2 Ch08.F 8/31/01 8:10 AM Page 125

Figure 8-1: MSMQ administration snap-in

COM+ queued components and their clients use messages queues to send and
receive method calls. Message queues can be public or private. Public queues are
registered in Active Directory, but private queues are available only if you specify
the machine name. When you install queued components in a Windows 2000
domain, COM+ creates a public message queue for the component.

When sending applications send messages, they can require a response from
MSMQ. The response can be in regard to the message reaching the queue or the
message being read from the queue or, if you wish, both actions can generate a
response from MSMQ. Response queues are similar to administration queues except
that the receiving application generates the response message (back to the sender).

Report queues hold messages that MSMQ generates, as messages move from
routing server to routing server. By enabling tracing for a message, an application
can specify that it wants to use a report queue.

MSMQ uses system queues internally. System queues make up the dead letter
queue and journal queues. The dead letter queue holds messages that cannot be
delivered to their destination queues. Each installation has two dead letter queues.
One dead letter queue holds transactional messages, and another holds regular mes-
sages. You see a little later in this chapter how queued components use transac-
tional dead letter queues.

Each time a public or private queue is created, MSMQ creates an associated jour-
nal queue. The purpose of the journal queue is to hold copies of messages until they
are read from the queue. Journaling is not turned on by default. Journaling can be
enabled for a queue by going into the queue properties by using the MSMQ snap-in
in the Computer Management Console. Figure 8-2 shows the General tab for a

126 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 126

public queue called helloworld. This queue is created after the installation of a
COM+ queued component.

Figure 8-2: Enabling journaling for a queue

MSMQ Messages
Essentially, messages are composed of a message body and its associated properties,
which determine the behavior of the messages as they are routed through the net-
work. The body of any message is the actual payload or data. Many properties can
be set programmatically by a sending application. Some of the more common prop-
erties are the body type, the message priority, the formatter, and the destination
queue. The body type property describes the data type contained in the body of the
message. Message types can be any number of data types such as integers or strings
and even other objects such as DataSets. The message priority gives a higher pri-
ority to critical messages as they are routed through the network. By default, mes-
sages have priority 0. Messages that have a higher priority number get routed
quicker than those that have a lower priority number.

Formatters specify the manner in which the message payload is streamed to the
body property. By default, .NET streams the payload as XML. Other formatters are
the ActiveXMessageFormatter and the BinaryMessageFormatter. Both of these
formatters stream data in a binary format. The ActiveXMessageFormatter allows
you to stream basic data types such as integers and strings, as well as classes, enu-
merations, and anything else that can be converted to a System.Object type.

You can set many of the message properties when you use queued components.
Although you do not interact directly with the messages sent to queued compo-
nents, you can set some properties by using the moniker. You encounter monikers
later in this chapter.

Chapter 8: Queued Components 127

114835-2 Ch08.F 8/31/01 8:10 AM Page 127

Developing MSMQ Applications by Using C#
For years, developers have used MSMQ COM components or MSMQ API functions
to develop applications that use message queuing. These APIs allow developers to
read from queues, write to them, and perform management tasks such as creating
them. The .NET Framework provides a similar set of APIs for the C# developer. The
System.Messaging namespace (System.Messaging.dll) contains all the classes,
interfaces, and enumerations you need to develop .NET applications that take
advantage of of MSMQ’s features. This section provides a brief introduction to the
System.Messaging namespace and commonly used classes to give you a feel for
developing messaging applications without using queued components.

The two most commonly used classes in System.Messaging are the
MessageQueue class and the Message class. The MessageQueue class is used to
read, send, and peek at messages that arive at a particular queue. The queue name
and path can be specified when the class is instantiated or by using the path prop-
erty. Table 8-1 lists the constructors for the MessageQueue class.

TABLE 8-1 MESSAGEQUEUE CONSTRUCTORS

Constructor Description Example

MessageQueue() Creates new MessageQueue mq = new
instance of the MessageQueue();
MessageQueue
class which is not
bound to a queue

MessageQueue(string path) Creates a new MessageQueue mq = new
instance of the MessageQueue
MessageQueue (“.\queueName”);
class and binds it
to the queue
specified by path

MessageQueue(string path, Binds queue MessageQueue mq = new
bool sharedModeDenyReceive) specified in path to MessageQueue

instanceof the (“.\queueName, true);
MessageQueue
class and grants
exclusive read
access to the first
application that
reads from the
queue

128 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 128

The Message class is used to manipulate the properties of an outgoing or incom-
ing MSMQ message. This class contains the body, or payload, of the message.
Typically, you create a new Message object, by using one of its three constructors,
when you are about to send a message to a queue. The constructors for this class
are shown in Table 8-2.

TABLE 8-2 MESSAGE CONSTRUCTORS

Constructor Description Example

Message() Creates an empty message Message m = new
class. You must fill in the Message();
desired properties.

Message(Object body) Creates a new class, setting MyClass mc = new
the payload of the message MyClass() Message m =
to the object passed in. Any new Message (mc);
class that inherits from the
object can be passed.

Message(Object body, Sets message body equal to
IMessageFormatter
formatter) body parameter. The MyClass mc = new

formatter specifies how the MyClass() Message m =
body is streamed to the new Message(mc, new
message. XmlMessageFormatter());

Look at what it takes to send and receive a message from a queue. The code in
Listing 8-1 opens a connection to a private queue called OrderQueue, sends a
struct called Order, reads the message out of the queue, and prints out the fields
of the Order struct.

Listing 8-1: Sending and receiving messages from a queue

using System;
using System.Messaging;

namespace OrderMessage
{
public struct Order
{
public string CustomerName;
public string Sku;

Chapter 8: Queued Components 129

114835-2 Ch08.F 8/31/01 8:10 AM Page 129

public int Quantity;
}

public class COrderApp
{
public static void Main()
{
// create a new order
Order order;
order.CustomerName = “Acme, Inc.”;
order.Sku = “sku123”;
order.Quantity = 100;

// open the OrderQueue queue and send the order
MessageQueue mq = new MessageQueue

(“Server1\\private$\\OrderQueue”);
mq.Send(order);

// specify the type of formatter we want to use
XmlMessageFormatter xmlf = (XmlMessageFormatter) mq.Formatter;

// tell the formatter the types we want
// to stream from this message
xmlf.TargetTypeNames = new

string[]{“OrderMessage.Order,OrderMessaging”};

// read the message from the queue
Message m = mq.Receive();
Order orderIn = (Order)m.Body;
Console.WriteLine(“Customer Name: “ + orderIn.CustomerName);
Console.WriteLine(“Sku: “ + orderIn.Sku);
Console.WriteLine(“Quantity: “ + orderIn.Quantity);

}
}

}

The MessageQueue class is created by using the second constructor in Table 8-1.
Notice the path of the queue. The first part of the path, Server1, is the name of the
machine hosting the queue. The second part of the path specifies the queue as a pri-
vate queue. The final part of the path is the queue name.

Once the new MessageQueue instance has been created, you need only to send
the Order struct onto the queue. You do not need to define a formatter for this
queue, because one has been defined already by default: XmlMessageFormatter.

Before you read the message back off the queue, however, you must define the
types you want to extract from the body of the message. In your case, transform the
body back into an Order struct so you can print the order back to the console.

130 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 130

xmlf.TargetTypeNames defines the types you want the formatter to stream back to
you. The string array assigned to the TargetTypeNames property holds the fully
qualified type name of your struct and the assembly that implements it. A fully
qualified type name contains the namespace and the type name.

Once the formatter knows which types you are going to extract from the mes-
sage body, you are free to read the message from the queue. Mq.Receive() reads a
message from the queue and returns an instance of a Message class. If multiple
messages are on the queue, this call retrieves the first message. If no messages are
on the queue, this call blocks (waits) until messages arrive or until the receive time-
out has expired. Because this method is overloaded, it can be called by passing in a
System.TimeSpan instance, which defines the maximum amount of time the call
waits for messages to arrive on the queue.

I have to admit that this example makes certain atypical assumptions. First, it

is generally good practice to check for the existence of the queue before try-

ing to open it and send messages. Second, you do not want to force the

client to block by making the client wait for messages for an infinite amount

of time. This example is not necessarily intended as a real-world example of

messaging. However, it is intended to demonstrate how some of the more

common tasks, such as sending and receiving messages and using the

XmlMessageFormatter, are accomplished with the System.Messaging
namespace. At the end of this chapter, you see examples of how queued

components hide much of this work from you.

Understanding Queued Components
in COM+
Queued components provide you with a mechanism for making method calls across
the network to remote machines. As you already know, MSMQ provides the trans-
port functionality to make this happen. This section breaks down the pieces of the
COM+ queued component architecture, displaying how method calls are packaged
into MSMQ messages and how they are unpacked on the component side. Also, this
section addresses some of the design considerations you must explore when devel-
oping your queued components.

Client and Server Requirements
It can be hard to understand how queued components work if you do not under-
stand what needs to be installed on the client and server. As you have probably
guessed already, MSMQ must be installed on the client and server. MSMQ provides
the underlying transport mechanism for queued components.

Chapter 8: Queued Components 131

114835-2 Ch08.F 8/31/01 8:10 AM Page 131

Perhaps the most important requirement, and the one that can easily be over-
looked at first, is the fact that the component must be registered on the client as
well as on the server. Because you are dealing with COM+ components, it follows
that COM+ must be installed also. As you see in a moment, the client does not
access the local version of the component. The local version is more of a template
that provides information to the client. With the queued component installed
locally, the client can consume the queued interfaces of the component. COM+ can
use the local copy of the component to determine if an exception class should be
used during error conditions.

With queued components, you must deploy your components not only on your
Web server or application server but on each of your client machines as well. This
is not so bad if you have only one client machine and one server, but chances are
you have to deploy to multiple client machines. .NET’s deployment model, particu-
larly as it applies to COM+ components, excels at this. In the past, if you deployed
queued components to client machines, you had to find a way to deploy compo-
nents, register them in COM+, and configure the appropriate attributes. COM+
replication can help you with this, but things can get hairy if clients become mis-
configured. In this event, an administrator may have to reconfigure the COM+
application. Because ServicedComponents contain their COM+ attributes directly
in their assemblies, the assembly needs simply to be re-registered.

Recorder, Listener, and Player
Figure 8-3 illustrates the architecture of the queued component system. The com-
ponents in this system are the client, recorder, listener, player, and, of course, the
queued component itself. As you can see in this diagram, both the client side and
the server side must have COM+ installed for a client to be able to use a queued
component. The recorder, listener, and player are all components of COM+, and
COM+ uses them to hide the details of MSMQ programming.

Figure 8-3: Queued-component architecture

Recorder
Client

application

Client machine Server machine hosting QC component

COM+ runtime

Listener

COM+ runtime

Player
Queued

component

132 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 132

When the client creates an instance of a queued component, it receives an
instance to a special COM+ component called the recorder in return. Once the client
has a reference to a recorder, it can call the recorder’s methods as if it were the
actual queued component. The recorder accepts the method calls as if it were the
queued component and bundles them into an MSMQ message. When the client
releases the reference to the recorder, the recorder submits the method calls to the
queued component as a single MSMQ message. The message goes to the queued
component’s public input queue to await processing by the listener component. At
no time is the client communicating directly with the queued component.

You may be wondering if nondeterministic finalization and Garbage

Collection play a role in the release of the recorder object. After all, in most

cases, a managed object is not released until the Garbage Collector collects

it. Fortunately, for those of us writing queued components, nondeterministic

finalization is not a problem. As you see later in this chapter, you explicitly

release your references to queued components (for example, the recorder).

At the server, the listener component waits for messages to arrive in the queued
component’s public input queue. Figure 8-4 shows the public queue for a COM+
application called queued components. The name of this queue is the same as that
of the COM+ application; in your case, it is queued components.

Figure 8-4: Public input queue for queued components application

Chapter 8: Queued Components 133

114835-2 Ch08.F 8/31/01 8:10 AM Page 133

The listener is responsible for taking messages off the application’s queue and
instantiating a player object. The listener does not directly instantiate the player
component; instead, it instantiates another COM+ component called the
ListenerHelper. The ProgId for this component is queued
components.ListenerHelper. I mentioned earlier that the recorder, listener, and
player are COM+ components. This is true in the sense that they are installed and
registered as part of the standard COM+ installation on Windows 2000. However,
only the recorder and ListenerHelper are truly configured components. Figure
8-5 shows where the ListenerHelper and recorder can be found in Component
Services Explorer. COM+ comes with a library application called COM+ Utilities,
which houses these components.

Figure 8-5: ListenerHelper and recorder in COM+ utilities application

The job of the ListenerHelper component is to create a player component.
Each incoming MSMQ message is assigned a player component. The player compo-
nent reads the contents of the message (the method calls), creates the actual queued
components, and plays back each method call from the client. The player plays
back the method calls in the same order in which the client called them.

Now that you know a little more about the queued-components architecture,
review these concepts by expanding Figure 8-2.

Figure 8-6 starts with the client creating an instance of the queued component.
In return, the client gets a reference to the queued components.Recorder config-
ured component. The client proceeds to make method calls on this reference just
as if it were actually using the queued component. Once the client releases its

134 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 134

reference to the recorder object, COM+ creates an MSMQ message and sends the
message to the queued component’s input queue. This entire process represents
steps 1 through 5.

When the message reaches the component’s public input queue, the listener
takes the message off the queue and creates an instance of the player component.
The listener uses the queued components.ListenerHelper component to do this
(step 7). Then the listener passes the message to the player component, which in
turn plays back the method calls contained in the message. At step 9, the player
plays the calls back in the same order in which the Recorder component records
them.

Instantiating Queued Components
Until this point in the book, I have been using the C# keyword new to create
instances of components. This has served you well, as you have wanted to create
and directly access instances of your components. The new keyword leaves you
with a couple of limitations when you wish to use queued components. First, in
most cases, the client and the component reside on two different computers. You
need a way to tell COM+ not only which component you wish to create but also on
what computer you wish to create it. The new keyword does not allow you to do
this. Second, as I mention in the previous section, what you really want back after
instantiating a component is a reference to the recorder, not a reference to the
actual component.

Figure 8-6: Expanded view of the queued components architecture

Recorder

MSMQ
message

MSMQ

Client
application

Client machine

Create a new QC

MSMQ transmits
message to

component's input
queue

Listener takes the message off the queue

Get back a reference
to the Recorder

Call methods
on Recorder
and release
reference

Package method calls into
an MSMQ message

Server machine hosting queued component

COM+ runtime

MSMQ
message

MSMQ
message

MSMQ

COM+ runtime

Listener Listener
Helper

12

3

4

5
6

7

Player QC9

8

Activate ListenerHelper
and get reference to the Player

Listener passes
message to the Player

Player "plays back"
method calls from client

Chapter 8: Queued Components 135

114835-2 Ch08.F 8/31/01 8:10 AM Page 135

Monikers are special types of components that allow you to specify which com-
puter hosts the queued components you want to use. Monikers, in essence, are fac-
tory components. If you are familiar with COM, you may know about the class
factory. Class factories in COM exist to create other COM components. Class facto-
ries are written specifically for a component. Because of this, they can have special
knowledge of the components they create. Monikers are similar to COM class facto-
ries; they exist to create other components. Monikers can get you around specify-
ing a computer name because they can take input parameters during object
initialization. I should point out that you do not create monikers directly. Monikers
are not created in the way you normally create classes or components by using the
new keyword. Monikers are created indirectly by passing a string to a method on
some class. The string specifies the name of the moniker and, optionally, its para-
meters. The moniker is created under the covers for you. This becomes clearer in the
next few paragraphs.

To create a queued component, use a particular moniker component called the
queue moniker. The queue moniker knows how to create the recorder component
(this solves the second limitation of new). One of the parameters you can pass to the
queue moniker is the name of the computer hosting the queued component. Also,
you can specify several parameters that affect the behavior of the message once it
is placed on the queue. I am not going to list all of the parameters the queue
moniker can take, but a few of them are: the message priority level; the destination
queue name; time to reach the queue; whether or not to generate tracing messages
as the message is routed; and the journal level for the queue. I think you get the
idea. You can reference the MSDN documentation on queued components for the
complete list of queue-moniker parameters.

When a COM developer wishes to use monikers, he or she does not use the nor-
mal CoCreateInstance (C/C++) or the Visual Basic command CreateObject.
Instead, monikers have been created with a similar call such as GetObject in Visual
Basic or CoGetObject in C/C++. C# developers have a similar means to instantiate
components with monikers. The Framework’s System.Runtime.InteropServices
namespace contains a class called Marshal that you use to create monikers. The
Marshal class contains many methods used to manage the interaction between the
Common Language Runtime (CLR) and the unmanaged runtime of Windows, par-
ticularly the COM runtime. Many of these methods deal with memory management
between the two runtimes. In this chapter, I will focus on two of the Marshal class’s
methods only: BindToMoniker and ReleaseComObject. Both of these methods are
static, which means you do not need to create an instance of the Marshal class to
use them.

You use the BindToMoniker method to create the moniker and, ultimately, the
recorder. This method takes one parameter, a string, which represents the name of
the moniker and its parameters, if any. Take a look at a few lines of code to make
this concept clearer:

136 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 136

IQC iqc;
iqc = (IQC) Marshal.BindToMoniker(“queue:/new:queued
componentsNamespace.queued components”);
iqc.SomeMethod();

In the preceding code, the Marshal.BindToMoniker creates an instance of a
queued component called QCNamespace.QC. The string parameter specifies the
name of the moniker — queue— and the name of the queued component,
QCNamespace.QC. In this string, I am using two monikers. The second moniker is
the new moniker specified with /new:. These two monikers are used in conjunction
to create an instance of the queued components or, more specifically, the COM+
recorder. I leave the explanation of the rest of the code until later in the chapter.
The iqc variable is your reference to the recorder object, which you treat as a ref-
erence to the actual queued component.

So that takes care of creating an instance of the queued component or, more pre-
cisely, gaining a reference to the recorder. Previously in this chapter, I stated that I
have a way of overcoming the problems Garbage Collection introduces to queued
components. The problem stems from the fact that you need to release your refer-
ence to the recorder to get COM+ to create the MSMQ message and to send it to the
queued component’s input queue. If you rely on Garbage Collection to release this
reference, you are not certain when your message will be submitted to the compo-
nent’s input queue. Fortunately, the Marshal.ReleaseComObject method call
allows you to release your reference explicitly. This method takes one parameter:
the reference you gain from the BindToMoniker call. Remember that because the
recorder is an unmanaged, configured component, your access to it goes through
COM Interop. When you make a call to ReleaseComObject, you are releasing your
reference to the runtime callable wrapper, which in turn decrements the recorder’s
reference count. Once the reference count reaches zero, the recorder is released, and
the message is submitted to the queue.

Exception Handling
Although queued components provide a robust environment for distributed appli-
cations, problems can still arise. For example, a client may not have sufficient
rights to send a message to a component’s input queue. In other situations, a com-
ponent may not be able to process a message that has reached its queue. The sec-
ond scenario can be particularly nasty because it can lead to a poison message. To
handle client errors and server-side errors, COM+ provides a way for you to specify
an exception-handling class when these problems arise. Before you get into that,
examine what happens when clients and servers have trouble processing messages.

SERVER-SIDE ERROR HANDLING
As you know, when a message reaches a component’s input queue, the listener
server picks up the message and hands it to the player. Even after the message has
reached the input queue, problems can arise. For some reason, the message can be

Chapter 8: Queued Components 137

114835-2 Ch08.F 8/31/01 8:10 AM Page 137

unreadable. A more likely scenario might be that the method calls inside the mes-
sage contain data that the component cannot process.

A poison message occurs when the player attempts to play back the method calls
on the component and one or all of the method calls fail. If the component returns
a failed HRESULT or raises an exception, the player aborts the process and puts the
message back on the queue. As the message goes back on the queue, the listener
picks it up again and passes it to the player, and the whole process starts again. If
there is no mechanism in place to handle the error, the message can loop through
the listener and player continuously. Figure 8-7 illustrates this process.

Figure 8-7: Poison messages in queued components

Messages the component cannot process are put on several retry queues. The
first time a message fails, it is put on the first retry queue. The first retry queue is
ApplicationName_0, where ApplicationName is the name of the COM+ applica-
tion hosting the queued component. After one minute, the listener takes the mes-
sage off the first input queue and tries to process it again. The message is tried three
times once it has been taken off the first retry queue. If, after these attempts, the
message still cannot be processed, it is placed on the second retry queue:
ApplicationName_1. Once the message is placed on the second retry queue, the lis-
tener waits two minutes before it tries the message again. Assuming the message
continues to fail, it is placed on each of the five retry queues. The duration the mes-
sage sits on each queue becomes longer each time the message falls to another
queue. Just as with the first and second retry queues, the message is tried three
times on each queue. Table 8-3 lists each of the retry queues, the number of retries
for each, and the length of time the message sits on the queue.

COM+ runtime

Message Listener

Listener takes the
message from the queue

Listener returns the
message to the queue

and the process repeats
itself

Player aborts
the playback

Queued component
returns a failure HRESULT

or raises an exception

Listener hands off the
message to the Player

Player plays back the method
calls from the client

Player Queued
component

138 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 138

TABLE 8-3 QUEUE TIMEOUTS AND RETRY ATTEMPTS

Queue Name Number of Retries Time to Wait on Queue
(Minutes)

ApplicationName_0 3 1

ApplicationName_2 3 2

ApplicationName_3 3 4

ApplicationName_4 3 8

ApplicationName_5 3 16

ApplicationName_DeadQueue 0 Indeterminate

The last queue in Table 8-3 is the component’s final resting queue. A message
goes into this queue if it cannot be processed during the other retry attempts.
Messages in this queue remain here until they are manually removed with MSMQ
Explorer. Once a message is placed in this queue, the listener does not attempt to
retrieve it.

The final resting queue and each of the retry queues are private and are created
when the COM+ application is marked as queued. If you do not want a message to
be retried this many times or to take as long to reach the final resting queue, you
have the option of deleting any or all of the retry queues. If you delete all of the
queues, a poison message goes directly to the final resting queue. If you delete only
a few of the retry queues, the other queues below the ones you delete are moved up
in priority. For instance, if you delete the third queue, the fourth queue behaves like
the third. In this case, the fourth queue is tried after the second queue fails.
Accordingly, messages wait on the fourth queue for eight minutes.

CLIENT-SIDE ERROR HANDLING
For a number of reasons, a client may have problems sending a message to the
component’s input queue. For example, a client may not have sufficient privileges
to submit the message. COM+ handles these types of errors in a similar fashion to
the way it handles errors on the component’s end. This becomes clearer in the next
section.

Unlike the server component, a client does not have retry queues. When a mes-
sage is determined to be undeliverable, it is moved to the client’s Xact dead letter
queue. A client has one chance to reuse the message once the message has fallen
into the dead letter queue. As a final effort to reclaim the message, COM+ supports
the use of a special configured class called an exception class.

Chapter 8: Queued Components 139

114835-2 Ch08.F 8/31/01 8:10 AM Page 139

EXCEPTION CLASSES
Exception classes are special kinds of COM+ components. They are specified
through a COM+ attribute called Queued Exception Class. Figure 8-8 shows the
Advanced tab for a queued component called QCMarshal.MarshalClass. In Figure
8-8, I have specified an exception class called QCMarshal.QC.

Figure 8-8: Exception class in Component Services Explorer

COM+ uses this exception class in a similar way for both server errors and client
errors. This component must implement the IPlaybackControl interface. Before
COM+ places a message on the component’s final resting queue, it looks to see if
the component has defined an exception class. If an exception class is present,
COM+ calls the IPlaybackControl.FinalServerRetry method. This method
allows the exception class to try to determine what has gone wrong and to report
errors to the developer. For client-side errors, a similar process exists. Before a mes-
sage goes onto the dead letter queue, COM+ calls the IPlaybackControl.
FinalClientRetry method. This method is used similarly to the way the
IPlaybackControl.FinalServerRetry method is used on the server side.

In addition to supporting the IPlaybackControl interface, the exception class
must implement the queued component’s queued interface. After COM+ calls one of
the methods on the IPlaybackControl interface, it replays method calls on the
exception class. At this point, the exception class has one chance to make the trans-
action happen. If the exception class throws an error, the message is put in the dead
letter queue or the final resting queue, depending on which side (server or client)
the error has occurred.

140 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 140

Queued Component Design Considerations
Using queued components and components that use loosely coupled events
requires specific design considerations. Remember from Chapter 6 that when you
design loosely coupled events, you have to keep in mind that method calls go only
one way: from the publisher to subscribers. The same is true for queued compo-
nents. Queued components are perhaps an even more extreme case of one-way pro-
cessing, as the lifetimes of the client and component do not necessarily overlap.
Keeping this central concept in mind helps you understand why queued compo-
nents must meet the requirements stated in this section.

Before you get into the requirements that components must meet in order to
be queued, examine some questions you should ask yourself when trying
to decide if you should use queued components.

� Do my clients and components need to talk to each other in real time?

� Do my clients even need a response from the component?

� Must my method calls be guaranteed to make it across the network?

� Can a time lag exist between when the method calls are made and when
the component processes them?

These questions are intended to drive your thinking about the differences
between synchronous calls and calls made by using MSMQ messages. For instance,
in the first question, if your clients do not need access to components in real time,
you might consider using queued components. As a general rule, queued compo-
nents do not respond to their clients about the success or failure of a method call.
If your clients are content to make a few method calls and then proceed with other
processing, queued components may work for you. The third question deals with
guaranteed delivery of MSMQ messages. Because queued components use MSMQ as
their transport, method calls can be guaranteed to reach the component. MSMQ
provides a more robust delivery mechanism than other techniques such as remote
procedure calls.

The final question should drive your thinking regarding batch-processing your
method calls. If your clients are comfortable with the fact that the component may
not process their method calls in a timely manner, you may be able to use queued
components to batch-process your method calls. Think of an order-entry scenario
in which users are entering orders all day into an order-entry application. At the
end of the day, everyone goes home, and computers are idle. What if those orders
can be processed at night — in a type of batch mode — while everyone is gone,
instead of being processed as users are entering them? Queued components are an
excellent fit for this type of processing. Because the COM+ server application must
be running to listen for incoming messages, you can schedule the application to
start during off hours. Until that time, messages from the clients sit in the compo-
nent’s input queue.

Chapter 8: Queued Components 141

114835-2 Ch08.F 8/31/01 8:10 AM Page 141

In addition to the questions mentioned previously, queued components must
meet certain requirements before they can be installed as queued components. First
and foremost, method calls must not contain output parameters or return values.
Remember that return values from a method call in C# are converted to [out,
retval] parameters in the component’s type library. In other words, methods in
ServicedComponent classes that return values are no good for queued components.

C# supports two keywords, ref and out, that are illegal in queued components.
Both of these keywords affect the behavior of method parameters. The ref keyword
forces a method parameter to be passed in by reference. Parameters passed in with
the ref keyword must be initialized before the method is called. During method
execution, the method can modify the parameter value, and the new value is
returned to the client. The out keyword behaves in a similar way, except that the
client does not have to initialize parameters before they are passed in. You cannot
queue your interfaces if they contain methods that use either of these keywords. In
fact, the Regsvcs utility does not install your component if it sees methods that
have these keywords (assuming you are installing queued components).

C# classes, even those derived from ServicedComponent, cannot be passed as
parameters to methods. Because the lifetimes of the client and component cannot
overlap, a copy of the class must be made as it is sent to the component.
Components passed to a queued component’s method parameters must be mar-
shaled into an MSMQ message before they can be sent to the component.
ServicedComponent classes do not support this functionality by default. If you
wish to pass your managed components as method parameters, they must derive
from a COM interface called IPersistStream. This interface enables the recorder
to marshal the object into a message and enables the player to unmarshal the com-
ponent from the incoming message.

Using Other COM+ Services with
Queued Components
Other COM+ services such as transactions, security, and loosely coupled events can
be used in combination with queued components. Some services, such as loosely
coupled events, provide a nice complement to queued components. Other services,
such as role-based security, introduce limitations. This section does not address all
of the services of COM+ but hits upon the most noteworthy services.

Role-Based Security
COM+ role-based security is supported for queued components even though the
lifetimes of the client and component do not overlap. When the recorder packages
method calls into an MSMQ message, the client’s security context is also included

142 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 142

in the message. When the message reaches the component, the player unpacks the
client’s security context. As the player begins to play back the method calls, the
queued component sees the calls as if they were coming directly from the client.
Because of this, the queued component can define roles and allow or deny access to
its interfaces based on those roles. In addition, calls such as ContextUtil.
IsCallerInRole are based on the context of the original caller, the client.

Transactions
Transactions are an integral part of queued components. COM+ transactions occur
on the client side when the recorder is invoked and on the server side when the
ListenerHelper returns the unconfigured player object. For your server-side objects,
this means that they are invoked in the ListenerHelper’s transaction if they sup-
port or require a transaction. If your component runs in the ListenerHelper’s
transaction and it calls ContextUtil.SetAbort or ContextUtil.Disable
Commit(), the message goes back on the queue and is retried. This can lead to a
poison message that ends up on the component’s final resting queue if the compo-
nent consistently aborts the transaction.

The recorder is configured to require a transaction. Clients that run in transac-
tions include the recorder in their transactions when they invoke the queued com-
ponent through the moniker. If the client aborts the transaction, the message is not
delivered to the queued component’s input queue. These messages can be taken off
the queue during a failed transaction because of MSMQ’s support for COM+ trans-
actions. MSMQ provides a resource manager that participates in DTC transactions.

Loosely Coupled Events
Of all the services COM+ offers, loosely coupled events implement the closest
development model to queued components. Like queued components, loosely cou-
pled events provide one-way processing of client calls to components.

Queued components can be used to provide asynchronous notification of events.
There are a couple of ways queued components can be used with events. Your first
option is to make the event class a queued component. In this scenario, publishers
use the Marshal class and queue moniker to instantiate the queued event class.
Method calls are generated and inserted into an MSMQ message as normal. When
the messages reach the event class, the recorder plays the methods, and the events
fire to subscribers.

Your second option is to queue the interfaces of subscribers. In this option, pub-
lishers consume the event class as they normally do but without MSMQ interaction.
As events fire, the event system passes method calls to the recorder, and MSMQ
delivers messages to subscribers.

Chapter 8: Queued Components 143

114835-2 Ch08.F 8/31/01 8:10 AM Page 143

Developing Queued
Components in C#
This section shows you how to write three implementations of queued components:

� A HelloWorld queued component

� A queued subscribers class in a loosely coupled event

� A queued component implementing an exception class

You will see how .NET supports the development of queued components through
attributes from the System.EnterpriseServices namespace. Unless I specify oth-
erwise, all of these attributes are in this namespace.

HelloWorld Queued Component
In this example, the client and component are implemented in the same namespace.
This may not be your typical implementation, but it serves to demonstrate how the
client and component interact. The client in this example is a console application
implemented in the MyApp class.

Before you get into the code, examine the COM+ attributes and development
model for queued components. Figure 8-9 shows the properties dialog for a COM+
application that holds queued components. Two queuing attributes are set at the
application level: Queued and Listen. If the Queued attribute is set, the public
application queue and the private retry queues are created (at installation). The
Queued attribute allows the application to receive MSMQ messages. The Listen
attribute tells COM+ that it should process messages once the application starts.

Figure 8-9: Application-level attributes

144 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 144

The next level down from the application is the queued component itself. The
only attribute specified on the component is the exception class. In Figure 8-10, the
Advanced tab displays an exception class I have configured called
QCNamespace.QCException. The exception class attribute can be a ProgID or
CLSID.

Figure 8-10: Exception class attribute

For the component’s interfaces, the final attribute related to queued components
is Queued. In Figure 8-11, you can see that the Queued attribute has been checked
on the Queuing tab for the IQC interface. When this attribute is enabled, clients can
use it to record method calls.

Figure 8-11: Queued attribute for IQC interface

Chapter 8: Queued Components 145

114835-2 Ch08.F 8/31/01 8:10 AM Page 145

Take a look now at the HelloWorld application. To specify the application-level
attributes, use the .NET Framework ApplicationQueuing attribute. The constructor
for this attribute sets the attribute’s properties to their default values, which means
the application is marked as Queued but is not marked to listen for incoming
messages.

To enable listening, the QueueListenerEnabled property must be set to true.
When the assembly is installed, this property enables the Listen attribute you saw
in Figure 8-9.

The ApplicationQueuing attribute has one other property called Enabled.
Enabled is a Boolean property that specifies whether or not the application is
queued. Using the default constructor sets this property to true and enables queu-
ing for the application. In the code in Listing 8-2, I have set the
QueueListenerEnabled and Enabled properties to true.

Listing 8-2: Hello World Queued Component

using System.Reflection;
using System.EnterpriseServices;

[assembly: AssemblyKeyFile(“QCKey.snk”)]
[assembly: ApplicationActivation(ActivationOption.Server)]
[
assembly:
ApplicationQueuing(Enabled=true,QueueListenerEnabled=true)

]

namespace HelloWorld
{
using System;
using System.EnterpriseServices;
using System.Runtime.InteropServices;
using System.Windows.Forms;

[InterfaceQueuing]
public interface IQC
{
void SayHello(string msg);

}

public class QC : ServicedComponent, IQC
{
public void SayHello(string msg)
{
MessageBox.Show(“HelloWorld.QC: “ + msg);

}

146 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 146

}

public class MyApp
{
public static void Main()
{
IQC iqc;
iqc = (IQC) Marshal.BindToMoniker(“queue:/new:HelloWorld.QC”);
iqc.SayHello(“Hello!”);
Marshal.ReleaseComObject(iqc);

}
}

}

The development of queued components revolves around the interface you
define as queued. Interfaces act as the glue between the client and component.
Interfaces provide a mechanism that allows the client and component to agree on
how they interact with each other. In your example, I have created an interface
called IQC. This interface has only one method defined: SayHello. SayHello takes
a string parameter. Notice that this method is void; it does not return a value. This
is in keeping with the rules for queued components I stated earlier in this chapter.
The InterfaceQueuing attribute marks this interface as queued when the compo-
nent is registered. This attribute maps directly to the COM+ attribute you saw in
Figure 8-11.

The queued component class is defined below the definition of the IQC interface.
This class, like all other COM+ classes written in C#, inherits from the
ServicedComponent class. This class also implements the IQC interface. The imple-
mentation of the ICQ.SayHello method for this class shows the msg variable in a
message box.

So far, this should be pretty straightforward. This model of interface-based pro-
gramming should look pretty familiar. In Chapter 6, you write your components in
a similar fashion. Things get a little trickier in the console application. I start off by
defining an interface variable: iqc. This variable holds a reference to the queued
component the moniker returns. To invoke the moniker and create the component,
use the Marshal.BindToMoniker class. The return value for this method is always
a System.Object class, regardless of the type the moniker is creating. To be able to
call methods on this object, cast it to an IQC type. The (IQC) between the method
call and the assignment operator (equal sign) accomplishes this.

Once you have a valid reference to the queued component (specifically, to the
recorder) and you have converted the queued component to a type you can use, you
can call its methods and release the reference. When you are done with the object,
call Marshal.ReleaseComObject to release the reference. At this point, the
recorder creates the MSMQ message and attempts to place it on the component’s
input queue.

Chapter 8: Queued Components 147

114835-2 Ch08.F 8/31/01 8:10 AM Page 147

Loosely Coupled Events and Queued Components
You can extend the preceding HelloWorld example to support loosely coupled
events. In the next example, I convert the preceding queued components class into
an event class by setting the EventClass attribute. Because the queued compo-
nents class is now an event class, I can remove the message box function from the
SayHello method, as it will not be called anyway.

When these components are installed and registered, the queued component is
configured as an event class, and its IQC interface is marked as queued. The QC class
still acts as a queued component. After the client calls the SayHello method and
releases the object reference, the method calls are packaged into a message and sent
to the application. On the server side, the player reads the message and plays back
the method calls. At this point, the COM+ event system engages and notifies sub-
scribers (in your case, the QCSubscriber class).

Listing 8-3: Combining Events with a Queued Component

using System.Reflection;
using System.EnterpriseServices;

[assembly: AssemblyKeyFile(“QCKey.snk”)]
[assembly: ApplicationActivation(ActivationOption.Server)]
[
assembly:
ApplicationQueuing(Enabled=true,QueueListenerEnabled=true)

]

namespace HelloWorld
{
using System;
using System.EnterpriseServices;
using System.Runtime.InteropServices;
using System.Windows.Forms;

[InterfaceQueuing]
public interface IQC
{
void SayHello(string msg);

}

[EventClass]
public class QC : ServicedComponent, IQC
{
public void SayHello(string msg)
{ }

148 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 148

}

public class QCSubscriber : ServicedComponent, IQC
{
public void SayHello(string msg)
{
MessageBox.Show(“HelloWorld.QCSubscriber: “ + msg);

}
}

public class MyApp
{
public static void Main()
{
Iqueued components iqc;
iqc = (IQC) Marshal.BindToMoniker(“queue:/new:HelloWorld.QC”);
iqc.SayHello(“Hello!”);
Marshal.ReleaseComObject(iqc);

}
}

}

Exception Classes
In this final example, you extend the queued components class from Listing 8-2 to
define an exception class. The ExceptionClass attribute defines an exception class
ProgID or CLSID for a queued component. This attribute has one constructor that
takes a string representing the exception class’s ProgID or CLSID. If you specify the
exception class’s CLSID, you need to define one by using the
System.Runtime.InteropServices.GuidAttribute attribute. If you do not
define this attribute, one is defined for you when you register the class with COM+.

Listing 8-4: Implementing an Exception Class

using System.Reflection;
using System.EnterpriseServices;

[assembly: AssemblyKeyFile(“QCKey.snk”)]
[assembly: ApplicationActivation(ActivationOption.Server)]
[
assembly:
ApplicationQueuing(Enabled=true,QueueListenerEnabled=true)

]

Chapter 8: Queued Components 149

114835-2 Ch08.F 8/31/01 8:10 AM Page 149

namespace HelloWorld
{
using System;
using System.EnterpriseServices;
using System.Runtime.InteropServices;
using System.Windows.Forms;
using COMSVCSLib;

[InterfaceQueuing]
public interface IQC
{
void SayHello(string msg);

}

[ExceptionClass(“HelloWorld.QCException”)]
public class QC : ServicedComponent, IQC
{
public void SayHello(string msg)
{
MessageBox.Show(“HelloWorld.QC: “ + msg);

}
}
public class QCExceptionClass :

ServicedComponent, IPlaybackControl, IQC
{
// method from IQC Interface
public void SayHello(string msg)
{
MessageBox.Show(“HelloWorld.QCExceptionClass: “ & msg);

}
// method from IPlaybackControl interface
public void FinalClientRetry()
{
// prepare for the final retry of the message
MessageBox.Show(“HelloWorld.QCExceptionClass:

FinalClientRetry”);
}
// method from IPlaybackControl interface
public void FinalServerRetry()
{
// prepare for the final retry of the message
MessageBox.Show(“HelloWorld.QCExceptionClass:

FinalServerRetry”);
}
}

150 Part II: COM+ Core Services

114835-2 Ch08.F 8/31/01 8:10 AM Page 150

public class MyApp
{
public static void Main()
{
IQC iqc;
iqc = (IQC) Marshal.BindToMoniker(“queue:/new:HelloWorld.QC”);
iqc.SayHello(“Hello!”);
Marshal.ReleaseComObject(iqc);

}
}

}

Remember that exception classes must implement not only the queued interface
but also the IPlaybackControl interface. IPlaybackControl comes from the
COM+ services type library (comsvcs.dll). To gain access to this interface from the
assembly, use the Type Library Importer utility (tlbimp.exe). The COM+ services
type library carries over as the COMSVCSLib namespace. Normally in the
FinalClientRetry and FinalServerRetry methods, you prepare for the queued
interface methods to be called. Here, I am just showing a message box on screen
that contains the name of the component and the name of the method being called.

Summary
If you retain anything from reading this chapter, I hope you understand how
queued components can help you leverage the asynchronous computing benefits of
MSMQ. Queued components — when used in the right places — can greatly help you
scale your applications. As you go forward and develop .NET applications, ask
yourself if your clients need an immediate response from their components. If the
answer is no, queued components may be a good solution for you.

Chapter 8: Queued Components 151

114835-2 Ch08.F 8/31/01 8:10 AM Page 151

114835-2 Ch08.F 8/31/01 8:10 AM Page 152

Advanced COM+ Computing
CHAPTER 9
Remoting

CHAPTER 10
The Future of COM+ and .NET

Part III

124835-2 Pt3.F 8/31/01 8:10 AM Page 153

124835-2 Pt3.F 8/31/01 8:10 AM Page 154

Chapter 9

Remoting
IN THIS CHAPTER

� The .NET Remoting Framework

� Introduction to SOAP

� Remoting ServicedComponents

REMOTING INVOLVES TWO APPLICATIONS talking to each other across a network or some
other boundary. Prior to using .NET, developers used remoting architectures such as
DCOM. DCOM enabled developers to call other COM components across the net-
work or across a Win32 process boundary. Generally, this worked fine if developers
were making calls inside their Intranets. However, as the Internet gained popularity,
weaknesses appeared in the DCOM computing model. Often, when an Internet appli-
cation using DCOM needed to make calls across the Internet, it had to go through
firewalls, proxy servers, or routers performing Network Address Translation (NAT).
All of this added up to a veritable minefield for DCOM applications.

One of the more recent evolutions in remoting is Simple Object Access Protocol
(SOAP). SOAP is a wire protocol that allows you to send and receive method calls
across the network. SOAP uses XML to encode method calls and HTTP to transport
those calls to their destinations. SOAP solves many of the problems that arise when
DCOM is used for Internet applications. Because SOAP uses HTTP, SOAP method
calls and normal HTTP requests from a Web browser look virtually the same to a
firewall or proxy server.

Nearly seamlessly, the .NET Remoting Framework supports SOAP. In addition, it
supports remoting by using other transports and encoders, such as TCP/IP and
binary encoders (also called formatters). The beauty of the .NET Remoting
Framework is that it allows you to mix and match transport protocols and format-
ters. You can also develop your own classes to handle the networking and format-
ting of method calls.

You may be wondering what .NET remoting has to do with COM+. It just so hap-
pens that all classes derived from ServicedComponent can be plugged into the
.NET Remoting Framework. All ServicedComponent-derived classes inherit from
System.ContextBoundObject, which inherits from System.MarhsalByRefObject.
ContextBoundObject and MarshalByRefObject ensure that a derived
ServicedComponent is transported safely across a network or application-domain
boundary.

155

134835-2 Ch09.F 8/31/01 8:10 AM Page 155

.NET Remoting Framework
The .NET Remoting Framework is a complicated subject. I am sure entire books will
be written on the topic. In this chapter, I am not trying to cover everything you can
do with the .NET Remoting Framework. You can extend the framework quite a bit
by implementing your own channels, ObjRef’s, formatters (these terms become
clearer later), and so on. This chapter provides an introduction to the pieces of the
remoting architecture and framework that apply to most .NET types, such as
ServicedComponents.

The terms Marshal, endpoint, and well-known object are used over and over in
this chapter. It can be difficult to jump into any topic as complicated as remoting
without understanding at least some of the common terms. Before you go on,
review what these terms mean in .NET remoting.

Marshaling Defined
When a client creates an instance of a component, it essentially receives a pointer
to a memory address where the instance resides. These pointers make sense to the
application creating the instance. These pointers, however, cannot be passed out-
side of their original application domain without a little help. Marshaling addresses
this issue by converting references to memory locations that make sense in one
application domain into addresses that make sense in another application domain.

However, marshaling involves a little more than just converting memory address
A to memory address B. Marshaling is responsible for transferring a method’s call
stack from the client to the server. For the purposes of this discussion, think of the
call stack as the block of memory that defines a method call as it is executing. A
call stack consists of the following:

� Parameter types and current values

� Executable code of the method

� Return values

� Any exceptions the method throws

Marshaling takes a method call and transforms it into some format that can be
sent across the wire (or application boundary) so the receiving application can pick
up the message and re-create the object reference and the method call. The frame-
work performs marshaling in the other direction: from the server back to the client.
Often, methods contain out parameters, ref parameters, or return values that need
to be marshaled back to the client.

156 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 156

Endpoint Defined
Endpoints are common in any remoting discussion. If you are familiar with HTTP
URLs, you should comprehend end points quite easily. In HTTP, a URL looks some-
thing like this:

http://www.hungryminds.com/mandtbooks/index.html

A URL defines an endpoint of sorts to a Web server. Here, the http:// identifies
the protocol being used. For a Web request, the protocol is, naturally, HTTP.
Immediately following the protocol definition is the name of Web server. In the pre-
ceding URL, the Web server is www.hungryminds.com. Following the name of the
Web server is the folder and page being requested. In this example, we are request-
ing index.html in the mandtbooks folder. The folder and the name of the page tell
the Web server at what path the requested resource can be found. Together, the pro-
tocol, Web server name, and path define an endpoint.

In the .NET Remoting Framework, endpoints are defined in a similar manner. A
client that wishes to invoke a method of a remote component must define an end-
point. As with an HTTP URL, the client must specify an endpoint by providing the
protocol, server name, and name of the resource. For example, if you have a Web
service on a server called www.someserver.com that you want to access from a
client application, you can define the endpoint as such:

http://www.someserver.com/myappfolder/mywebservice.aspx

This should look very familiar. Again, define the protocol, Web server, and path
to the resource you are trying to consume. In this example, the Web server hosts the
remote component you are trying to access. Once the client connects to the Web
server, the mywebservice.aspx page instantiates the component and makes the
requested method call.

However, to access remote components, the .NET Framework allows you to use
other protocols, such as TCP. As you can see in the “Channels” section of this chap-
ter, remote components can be hosted in Windows services. Any Windows service
that hosts .NET components for the purpose of remoting must listen on some
TCP/IP port for incoming requests. In this scenario, the client must specify the port
number when it provides the endpoint to the remoting framework. For example, if
you have a client that wishes to connect to a remote component on a Windows ser-
vice listening to port 9000, the endpoint might look something like this:

tcp://www.someserver.com:9000/RemoteComponentName

In this example, I specify the protocol as TCP. The server name is still www.some-
server.com, but this time I have added the port number, 9000. When the client
instantiates an instance of the remote component, the remoting framework is intel-
ligent enough to know that you are requesting a component called
RemoteComponentName.

Chapter 9: Remoting 157

134835-2 Ch09.F 8/31/01 8:10 AM Page 157

Well-known Objects
Well-known objects have been registered with the remoting runtime. These are
objects in which type information in the form of metadata is available. These
objects are considered to be well known because both the client and server are
aware of their existence and how they are to be processed. You see in the next sec-
tion that remotable objects fall into two broad categories: client activated and
server activated. Both of these types of objects are considered well known. In fact,
all of the COM+ components you write in this chapter are considered well known.

In the preceding discussion regarding endpoints, I give you a TCP example of an
endpoint. The last section of the endpoint defines the name of the remote object.
This is the name of the well-known object that the hosting application on the server
registers.

Marshaling by Reference Versus Marshaling by
Value
One of the first things you should think about when designing a remote class is
whether you want the client to get its own local copy of the class or whether you
want the class to stay on its original server and have clients access the component
remotely. The framework considers classes that follow the former scenario to be
MarshalByVal (marshal by value) types. When a client accesses these kinds of
classes, the framework makes a copy of the running instance of the class and trans-
ports it across the network to the client. Classes that fall into the latter scenario are
called MarshalByRef (marshal by reference). ServicedComponent-derived classes
fall into this category.

MARSHALING BY VALUE
MarshalByVal classes are copied in their entirety whenever they are referenced. By
nature, class references can be made to MarshalByVal types (or to any other type)
in any of the following ways:

� Instantiating a new instance of the class

� Passing a class as a parameter to a method call

� Returning an instance of a class as a method’s return value

� Accessing a property or field of another class

Classes marshaled by value must implement the System.Runtime.
Serialization.ISerialiable interface or be decorated with the System.
Serializable attribute. The ISerializable interface and the Serializable
attribute are used during the marshaling process to convert the in-memory repre-
sentation of the class into a format that can be transmitted across the net-
work. ISerializable gives you greater control over how the class is serial-
ized. This interface defines one method: GetObjectData (SerializationInfo,

158 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 158

StreamingContext). The first parameter of this method, System.Runtime.
Serialization.SerializationInfo, is a class that allows you to define the types
and their values that will be serialized. The second parameter, System.Runtime.
Serialization.StreamingContext, is a structure that allows you to define source
or destination contexts of the class. The context can be specified as originating
from another application domain or from a different computer, among other places.
It is important to note that MarshalByVal classes need not implement these two
options directly. It is sufficient to inherit, either directly or indirectly, from an
ancestor class that implements ISerializable or is attributed with the
Serializable attribute.

Decorating a class with the System.Serializable attribute is a little less
involved than implementing the ISerializable interface. If you choose to go this
route, you gain simplicity and ease of implementation, but you lose a certain
amount of flexibility. In other words, you pretty much get what the runtime hands
you. In a class that has been marked with this attribute, all fields are marshaled into
the destination-application domain, with one exception. The System.
NonSerializable attribute is used for fields (of a class marked with
Serializable) not to be serialized. As the runtime serializes a class, it skips fields
marked with NonSerializable.

MARSHALING BY REFERENCE
MarshalByRef classes stay in the application domain in which they are created. As
clients instantiate new instances or reference existing ones, MarshalByRef objects
stay put.

For the remoting runtime to marshal a class by reference, the class must inherit
from System.MarshalByRefObject or from a derived class such as System.
ContextBoundObject. As you know by now, all classes that wish to utilize COM+
services derive from the ServicedComponent class. The ServicedComponent class
inherits from the ContextBoundObject class, which inherits from
MarshalByRefObject. This means that all ServicedComponent-derived classes can
be marshaled by reference. Figure 9-1 depicts the class hierarchy for a
ServicedComponent-derived class.

The MarshalByRefObject and ContextBoundObject classes are defined as
abstract-base classes. Abstract-base classes such as these cannot be instantiated
directly. They are intended to be used solely as base classes for other components.
For classes such as ServicedComponent that inherit directly from base classes, the
child must implement all methods the class defines. Incidentally, because
ContextBoundObject is an abstract class, it does not have to implement the meth-
ods of MarshalByRefObject.

DECIDING BETWEEN MARSHALBYVAL AND MARSHALBYREF
If you are implementing ServicedComponent-derived classes, choosing between
MarshalByRef and MarshalByVal is moot. Because ServicedComponent inherits
from ContextBoundObject, you know that all of your COM+ components are mar-
shaled by reference. But how do you decide which to use if other parts of your

Chapter 9: Remoting 159

134835-2 Ch09.F 8/31/01 8:10 AM Page 159

application need to be remoted without the help of ServicedComponent? Let me
give you some criteria to help make that decision.

Figure 9-1: Class hierarchy for ServicedComponent

Objects whose complete state can be moved across the network with a minimal
performance impact are often good candidates for being marshaled by value. As an
object becomes larger, the performance impact from making a copy of it and trans-
ferring it across the network can become prohibitive.

Usually, objects that maintain state specific to a particular machine cannot be
marshaled by value; thus, marshaling by reference becomes your only option.

System.ContextBoundObject

System.MarshalByRefObject

System.Object

Classes that inherit from this class are marshaled
by reference. Since this is an abstract base class,
you cannot create an instance of this class directly.

Classes that inherit from this are not only
marshaled by reference but also bound to
the context in which they were created. Like
MarshalByRefObject, this class is abstract.

Since ServicedComponent inherits from
ContextBoundObject and MarshalByRefObject
(indirectly), any COM+ component you create
can be remoted by reference.

YourNamespace.
YourComponentName

System.EnterpriseServices
ServicedComponent

160 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 160

Consider a class that wraps access to a file on a particular machine. Unless the
entire file itself can be copied to each client, it is not feasible to marshal this class
by value.

Many applications that extensively use COM+ services such as object pooling
and transactions are deployed on a server farm that has multiple servers. Usually,
these servers are much more powerful than your typical client machine. Often, they
are configured to perform a specific task. Marshaling these components by refer-
ence makes sense in this situation, as you want the component to do its work on
the server farm.

CONTEXT-BOUND OBJECTS
Before I go on, I want to explain what a ContextBoundObject derived class is and
why ServicedComponent inherits from this class. A context in .NET remoting is
very similar to a context in COM+ (discussed in Chapter 4). Contexts can be viewed
from two angles. One way to think of a context is as a property bag for a class. The
property bag might contain properties that tell the remoting runtime that access to
this class must be serialized or that this class is performing transactional work. A
context can also be thought of as a subdivision of an application domain.
Remember that an application domain in .NET is a logical process. A Win32 process
can have multiple application domains running inside of it. Following that, an
application domain can have multiple contexts within itself. Figure 9-2 shows the
breakdown of Win32 processes, application domains, and contexts for a remoting
application.

Each application domain has at least one context. This is called the default con-
text. When a class such as ServicedComponent is instantiated inside an application
domain, a new context may be created. When types from one context access types
in another context, calls are made through a proxy object, unknown to the type
originating the call.

ServicedComponent derives from ContextBoundObject because all COM+
components, and thus all ServicedComponent-derived classes, are created either in
their own contexts or in the context of their creators. The remoting runtime must
be able to bind a ServicedComponent-derived class to its context to ensure that
none of the access rules such as access serialization are violated.

Activating a Remote Object
To call methods on any kind of class, you must create an instance of the class.
When it comes to instantiation, remotable components fall into two categories:
client-activated objects and server-activated objects. In both cases, clients continue
to use some form of object creation API, such as new. Client-activated objects are
created when the client creates a new instance of the object using the C# keyword
new. Server-activated objects, on the other hand, are activated when the client calls
a method.

Chapter 9: Remoting 161

134835-2 Ch09.F 8/31/01 8:10 AM Page 161

Figure 9-2: Contexts, application domains, and Win32 processes

CLIENT-ACTIVATED OBJECTS
In client-activated objects, the client controls when the object is created. When the
client makes an API call to create an instance of the component, the remoting
architecture creates the remote component and returns a reference to the client.
Each instantiation the client makes creates a new component on the server.

Remember that the client controls when a client-activated object is created. The
server, on the other end of the remoting architecture, does not differentiate between
a client-activated object and a server-activated object. The client decides when the
component is instantiated by using specific APIs.

Client-activated objects, unlike server-activated objects, allow you to create
instances of remote objects by using parameterized constructors. Using the
new keyword is probably the most straightforward way to use parameterized

Physical machine boundary

Context Boundary
from ContextBoundObject

Common Language Runtime
Application Domain Boundary

Windows 32-bit process boundary

ServicedComponent
derived class

162 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 162

constructors. Another way to use parameterized constructors is with the
Activator.CreateInstance method. The Activator class comes from the System
namespace. CreateInstance is an overloaded method that can be used to pass in
an object [] array. The array contains the parameters for the object’s constructor.

SERVER-ACTIVATED OBJECTS
Server-activated objects fall into two categories: Singleton and SingleCall.
Instead of the client, the remoting runtime running on a server creates the
instances. Both of these types of objects are created when the client calls a method
on the object. The first time the client calls a method, an object-creation request
appears in the network transmission. The .NET Remoting Framework does not sup-
port the creation of server-activated objects by using parameterized constructors.

SingleCall objects are very similar to JIT components in COM+. The remoting
runtime instantiates an instance of a SingleCall object each time the client calls a
method (Figure 9-3). Remember that if a component is marked to enable Just In
Time Activation (JITA), COM+ automatically creates an instance of the component
just before a method call occurs; in addition, COM+ destroys the instance after the
call returns. SingleCall objects work in the same way. A new instance of the
remote object services each method call coming from the client. The Singleton
object is alive only for the duration of a method call.

Figure 9-3: SingleCall object with multiple clients

Singleton objects are created when the client makes a method call. The first
client to make a method call takes whatever hit is associated with the creation of
the object. Subsequent calls from the client, or calls from other clients, are serviced

Client 1
Method call results in a new instance

CLR Application Domain
(remote machine)

SingleCall
object

SingleCall
object

SingleCall
object

Client 2
Method call results in a new instance

Client 3
Method call results in a new instance

Chapter 9: Remoting 163

134835-2 Ch09.F 8/31/01 8:10 AM Page 163

from the original instance of the object (Figure 9-4). In other words, Singleton
objects service all client requests from one instance. A lease determines the lifetime
of a Singleton object when the object is instantiated. The lease has a default expi-
ration associated with it. Once the remoting runtime has determined that the lease
has expired, the runtime deactivates the object. Once this happens, the object
becomes eligible for Garbage Collection.

Figure 9-4: Singleton object with multiple clients

It is important to understand state issues when dealing with both types of server-
activated objects. Both of these types of objects are stateless. If you understand how
JIT components in COM+ become stateless, you are well on your way to under-
standing how SingleCall objects are stateless. The concept is the same for both
development models. Because a SingleCall object is destroyed after each method
call, there is no way for the object to hold any state — at least not any client state.
Technically speaking, a Singleton object can hold client state, but this is a bad
idea for a couple of reasons. First of all, if one of these types of objects holds client
state, at some point it might contain state from multiple clients. If the object were
to update a database by using properties previously set by a number of clients, the
database might become corrupted. Another reason to avoid holding state in a
Singleton object is that the object’s lease can expire at any time without the
client’s knowledge. If this happens, no exception can be raised for the client to
detect. The original object is disconnected from the remoting runtime. A new
instance of the object is created when the next method call is made. The state the
original object holds is lost when the object is destroyed.

Client 1

CLR Application Domain
(remote machine)

SingleCall
objectClient 2

Method call is serviced from one instance

Method call is serviced from one instance

Method call is s
erviced from one instance

Client 3

164 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 164

If you need to maintain state in your remote objects, client activation is your
best route. Because a new instance services each client, these types of objects can
safely hold state. Keep in mind, however, that many of the rules related to non-
deterministic finalization apply here. If the object holds expensive resources, it
should implement some sort of close method or dispose method. If the network goes
down before the client can call one of these methods, the resource may be released
only when the remote object becomes unreachable (by going out of scope) and
Garbage Collection occurs. The object does not go out of scope until the lease has
expired and the remoting runtime has released the object.

Proxies
When the client instantiates an instance of a remote component, it is able to call
methods on the component as if it were running within its own application domain.
Once you figure out how to instantiate a component in the manner you like, you
are free to use the instance as if it were any other type within your application.
Proxies fool the client into thinking it is dealing with an actual instance of the
remote object. In reality, the proxy is forwarding method calls to the remoting
framework, which, in turn, connects to the remote machine and delivers the method
call to the remote component. The remoting framework implements two proxies
that work together to provide this functionality: the transparent proxy and the real
proxy.

THE TRANSPARENT PROXY
The transparent proxy intercepts calls from the client and forwards them to the real
proxy object. When the client creates an instance of a remote object, regardless of
the object’s activation type (server activated or client activated), the remoting run-
time returns a transparent proxy. As the client calls methods, the transparent proxy
verifies that the methods (and their parameters) are consistent with the type being
used. In other words, if the client instantiates a class called CFoo and calls one of
CFoo’s methods, such as CFoo.DoSomething, the transparent proxy intercepts the
call to DoSomething and explores several questions:

� Does CFoo have a DoSomething method?

� Are the method parameters the correct type?

� Is this a public method?

� Does CFoo live in another application domain?

The transparent proxy uses the client’s local copy of the remote object’s assem-
bly to verify the method call. Take a look at Figure 9-5 to clear this up.

Chapter 9: Remoting 165

134835-2 Ch09.F 8/31/01 8:10 AM Page 165

Figure 9-5: The transparent proxy intercepts method calls.

In Figure 9-5, you see a console application creating a new instance of the CFoo
class. Assume that this is a client-activated object and that CFoo inherits from
MarshalByRefObject. When the client’s call to new CFoo (step 1) returns, the client
gets an instance of the transparent proxy, although it thinks the proxy is CFoo.
When the call to DoSomething is made, the transparent proxy intercepts the call
and verifies it against the type information in the client’s local assembly. This
assembly contains the definition for CFoo. Assuming the parameters for
DoSomething are correct, the transparent proxy forwards the call to the next step in
the remoting process: the real proxy.

The transparent proxy is responsible for transforming a client’s method call into
a message that can be handed off to the real proxy. The message contains all of the
method’s parameters and their values. The transparent proxy takes a snapshot of
the method call at runtime and converts it to a message-class object. The message
object must implement the System.Runtime.Remoting.Messaging.IMessage
interface. I discuss messages later in this chapter. For now, understand that the
transparent proxy is responsible for constructing the message and forwarding it to
the real proxy.

The transparent proxy is an internal class the remoting framework implements.
You never create an instance of the transparent proxy yourself. However, some-
times it is useful to know if you are dealing with a remote proxy or an actual
instance. RemotingServices.IsTransparentProxy is a static method you can use
to determine if the instance of a class is a transparent proxy or a real object
instance. This method takes a System.Object parameter. In the preceding example,
if the variable holding your instance of CFoo were called foo, this call would be
RemotingServices.IsTransparentProxy (foo).

CFoo

Client's Application Domain

call DoSomething
against transparent proxy call new CFoo

Client's Main() method
inside console app

Remote Object Application Domain
CFoo

(transparent proxy)

Local copy of
assembly for

CFoo

1

Return transparent proxy2

3

call DoSomething()
and verify against

local assembly

4

166 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 166

THE REAL PROXY AND OBJECT REFERENCES
The real proxy is responsible for communication between the transparent proxy and
the rest of the remoting runtime. I mentioned previously that the transparent proxy
forwards method calls in the form of an IMessage interface to the real proxy. The
real proxy takes the message and forwards it the appropriate channel. I discuss
channels in the next section. For now, think of a channel as the piece of the remot-
ing framework that knows how to send and receive data from the wire.

The transparent proxy forwards a message to the real proxy through the real
proxy’s Invoke method. The Invoke method takes one parameter, an object that
implements the IMessage interface. The real proxy class is defined in the
System.Runtime.Remoting.Proxies namespace. The real proxy class is yet
another abstract class that a client cannot instantiate directly. Just as the transpar-
ent proxy is implemented for you, so is the real proxy. However, unlike the trans-
parent proxy, the real proxy can be extended if it needs to be.

The real proxy handles communication coming from the remote object. When a
remote object is instantiated, the real proxy forwards the activation request to the
remote object and waits for a response. If the remote object is to be marshaled by
reference, the response that comes back is in the form of an object reference, called
an ObjRef. The ObjRef is a class that contains the following information about the
remote object:

� The remote object’s strong name

� The remote object’s class hierarchy

� The remote object’s supported interfaces

� The remote object’s URI

� The remote object’s list of channels registered on the server

The real proxy uses the information in ObjRef to create an instance of a trans-
parent proxy. To understand how all of this works, take a look at Figure 9-6 to see
what happens when a client (through client activation) instantiates an instance of a
remote MarshalByRef object.

In Figure 9-6, the client’s activation request goes out to the remote object’s
application domain when the client creates a new CFoo instance by using the new
keyword. Once the remote object is created, the remoting runtime returns a refer-
ence to it in the form of an ObjRef. In stage 2, the remoting runtime on the client
sees that a response has come back from the server and creates an instance of
System.Runtime.Remoting.Proxies.RealProxy. The real proxy reads the infor-
mation about the remote object from ObjRef and creates an instance of the trans-
parent proxy (stage 3). Once stage 3 is complete, the client is free to make method
calls on the remote object.

Chapter 9: Remoting 167

134835-2 Ch09.F 8/31/01 8:10 AM Page 167

Figure 9-6: Client activation of marshal by reference object

Channels
Channels are the part of the remoting framework that takes a message and sends it
across the network to the destination machine. They know how to communicate by
using various network protocols: HTTP, TCP/IP, SMTP (used for e-mail), and even
MSMQ. The only two protocols the .NET Framework supports out of the gate are
HTTP and TCP/IP. To use the preceding protocols, or any other, for that matter, you
have to implement your own channel. All of the types needed to work with chan-
nels are in the following namespaces:

� System.Runtime.Remoting.Channels

� System.Runtime.Remoting.Channels.Tcp

� System.Runtime.Remoting.Channels.Http

The Channels namespace contains classes needed to register channels and inter-
faces needed to implement custom channels. A channel is registered for an entire
application domain. If a client or object wishes to communicate remotely, at least
one channel must be registered in the application domain. Multiple channels can be
registered with multiple application domains in a process.

client

Client Application Domain

Client calls new CFoo

Stage 1

Remote Application Domain

Remoting runtime
creates a new

instance of CFoo

CFoo

client

Client Application Domain
Remoting runtime
returns an ObjRef

Stage 2

Remote Application Domain

CFoo
Real
proxy

client

Client Application Domain

Stage 3

Transparent
proxy is

returned to
the client

Real proxy reads
info from ObjRef
and creates the

transparent proxy

Transparent
proxy

Real
proxy ObjRef

168 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 168

Two channels cannot be registered to listen on the same TCP/IP port. To under-
stand this limitation, take a step back and consider the TCP/IP protocol. Note that
when I mention TCP/IP here, I am not talking about the TCP channel but the net-
working protocol itself. TCP/IP defines a remote application as an IP address plus a
port. TCP/IP maps a port to a Win32 process. The IP address specifies the machine.
Together, the IP address and the port number define an endpoint in TCP/IP. One of
the rules of TCP/IP is that no two processes can be listening for traffic on the same
port. When I say that no two channels in .NET can be registered on the same port,
I do so because it is a requirement in TCP/IP.

Channels fall into three categories:

� Client-side channels

� Server-side channels

� Channels that are both client side and server side

Client-side channels implement the IChannelSender interface from the
Channels namespace. Client-side channels can send only messages going from the
client to the server. Server-side channels listen for incoming messages from the
client. Server-side channels must implement the Channels.IChannelReceiver
interface. Channels that wish to send and receive message must implement both
interfaces.

I mentioned previously that the remoting framework supports two channels for
the HTTP and TCP/IP protocols. As you can guess, the HTTP channel uses a Web
server to host remote objects. Both client and server HTTP channels use types from
the System.Net namespace to communicate to and from the Web server. If you
choose the HTTP channel, the remoting framework encodes messages in XML by
default. The XML takes the form of SOAP messages. The TCP channel encodes mes-
sages into a special binary format before it transfers the message over the wire.
Server-side TCP channels are commonly hosted in Windows services. Of the two
channels, TCP offers better performance for applications. Messages that go through
the TCP channel do not have to go through the Web server before they can be
processed, and they do not have to be read in by an XML parser. The HTTP chan-
nel, however, does offer greater interoperability with the Internet. Because HTTP
uses well-known ports such as port 80, it is more firewall friendly than the TCP
channel. In addition, HTTP can be proxied easily if clients are accessing the Internet
through proxy servers.

Remote Object Lifetime
In the good ol’ days of COM, an internal reference count determined object life-
times. As clients passed around references to components, the reference count
increased. As clients released their references, the component’s reference count
decreased. When the last client released its hold on a component, the reference
count went to zero, and the component deleted itself from memory. Problems arose

Chapter 9: Remoting 169

134835-2 Ch09.F 8/31/01 8:10 AM Page 169

when COM components were remoted across the network. If a client was discon-
nected from the network before it could release its reference to the component, the
reference count could not reach zero, and the component could not delete itself.
The .NET remoting infrastructure takes a slightly different approach to object life-
time. When a client instantiates an instance of a marshal by reference class, a lease
is created for that class. The lease determines the lifetime of the remote class. If the
lease expires and the remoting runtime cannot renew the lease, the class is de-
referenced and becomes eligible for Garbage Collection.

Leases are types that implement the ILease interface. ILease comes from the
System.Runtime.Remoting.Lifetime namespace. This interface contains proper-
ties that define a number of aspects of the lease:

� The time remaining in the lease

� The current state of the lease

� The initial lifetime of the lease

� The timeout for trying to connect to a sponsor

� The amount of time for which the lease is renewed when called

Essentially, the time remaining in the lease is the time that the remote object has
left to live before it is disconnected from the remoting runtime and marked for
Garbage Collection. A lease can be in any of the following states:

� Active

� Expired

� Initialized but not activated

� Not initialized

� Currently renewing

The fourth property of the preceding list (Not initialized) is the initial length of
time for which the lease is valid. Once this period has expired, the remote object is
released, assuming the lease has not been renewed. If this property is set to null, the
lease does not time out. In this case, the remote object attached to the lease is not
freed until the application domain is torn down. A sponsor is a class that can renew
the lease. The sponsorship timeout value of the lease determines how long the
remoting runtime waits while it tries to connect to one of the specified sponsors. If
the lease is about to expire and a sponsor cannot be reached to renew the lease
within the time the sponsorship timeout specifies, the lease expires, and the remote
object is released.

The final property of the preceding list (Currently renewing) is the amount of
time by which the lease increases when the lease is renewed. Leases can be renewed
in a number of ways:

170 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 170

� The client specifically calls the lease’s Renew method.

� The remoting runtime contacts a sponsor to renew the lease.

� A client calls a method on the remote object.

For the lease to be renewed when a client calls a method, the lease’s
RenewOnCallTime property must be set.

The ILease interface defines methods that can be used for the following:

� Registering a sponsor for the lease

� Renewing the lease

� Removing a sponsor from the lease

A sponsor is registered with the Register method. This is an overloaded method
that takes an ISponsor interface as one of its parameters. The ISponsor interface
can also be found in the System.Runtime.Remoting.Lifetime namespace. The
overloaded Register method takes a TimeSpan instance in addition to an
ISponsor interface implementer. The TimeSpan maps to the RenewOnCallTime
property.

The lease is renewed through the ILease.Renew method. This method takes a
TimeSpan instance used to increase the lifetime of the lease. The TimeSpan passed
to this method is added to the CurrentLeaseTime property to increase the lease’s
lifetime.

The runtime holds a list of sponsors for any particular lease. When a sponsor is
to be removed from the lease, the UnRegister method is called. UnRegister takes
an instance of ISponsor to unregister the sponsor. This instance is one of the
classes used in a call to Register.

Implementers of the MarshalByRefObject class initialize leases.
MarshalByRefObject contains two methods — GetLifeTimeService and
InitializeLifetimeService— used to initialize and return classes that imple-
ment the ILease interface. GetLifetimeService returns an instance of type
object. A caller of this method is expecting a type that implements the ILease
interface. Any MarhalByRefObject implementer should ensure that an object this
method returns implements the ILease interface. The IntializeLifetimeService
method initializes a new lease and returns it to the caller. By implementing this
method, implementers of MarshalByRefObject can initialize the lease properties
such as the sponsorship timeout and the initial lifetime.

Introduction to SOAP
Certainly, you have heard a lot of noise about SOAP, specifically noise related to
Web services. SOAP is an acronym for Simple Object Access Protocol. SOAP is a
specification. It establishes a format that remote method calls can take when they

Chapter 9: Remoting 171

134835-2 Ch09.F 8/31/01 8:10 AM Page 171

are transferred across the network. SOAP uses XML to describe the data involved
with a method call. The SOAP 1.1 specification, fully supported in .NET remoting,
allows any transport protocol to be used to carry SOAP messages across the wire.
The most common transport protocol used with SOAP is HTTP, but others can be
used as well:

� Simple Mail Transfer Protocol (SMTP)

� File Transfer Protocol (FTP)

� Message Queuing (MSMQ or IBM MQ Series)

� Remote Procedure Call (RPC)

This is by no means an extensive list of protocols that can be used in conjunc-
tion with SOAP, but I hope the list gives you an idea of how extensible SOAP can
be. For the purposes of this discussion, focus on using HTTP with SOAP, as this is
the most common implementation.

HTTP Header
To make a method call using SOAP and HTTP, the client must know how to formu-
late a proper HTTP request header. Take a look at an HTTP header you might see in
a typical SOAP request:

POST /MyApp/MyPage.aspx HTTP 1.1
Host: www.myserver.com
Content: text/xml
Content-Length: 100
{crlf}
<< post data here >>

The first line of the request header specifies three pieces of information:

� The HTTP request method

� The path to the requested resource

� The version of HTTP being used

The request method can be any valid HTTP request method. The two most com-
mon are Get and Post. When you open your browser and type a URL or click a link
on a Web page, you are using the Get method. Often, but not always, when you fill
in a form on the Web and submit it, you are using the Post method. The Post
method is favored when dealing with SOAP for a couple of reasons. First, the Post
method allows you to send more data than a Get method allows you to send.
Second, when you pass information with a Get request, that information must be
appended to the end of the path via a question mark. This can become rather cum-
bersome if you are trying to send a lot of information with the request. The second

172 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 172

line of the request represents the Web server for which the request is intended.
Usually, this is the fully qualified domain name, but it can be a NetBios name or
TCP/IP address. The third and fourth lines of the request represent the type and
length of the content, respectively. For SOAP requests, the content type is
text/xml, meaning that the following data is XML. The Content-Length tells the
Web server how many bytes of data it can expect in the request. Here, I set the con-
tent length to 100 bytes. The carriage return, line feed combination ({crlf}) after
the content length signifies the end of the HTTP header and the beginning of the
request payload. In my example, the line that reads << post data here >> is
intended to represent the request payload. For SOAP requests, this represents the
SOAP message. I talk about the SOAP message in the next section.

SOAP Message
A SOAP message is an XML document that consists of two parts: the SOAP header
and the SOAP body. The header and body of the message are put inside the top-
level XML element known as the SOAP envelope. Conceptually, a SOAP message
looks like Figure 9-7.

Figure 9-7: SOAP message logical structure

SOAP header

SOAP Envelope

HTTP request payload

HTTP header

HTTP request

SOAP body

Chapter 9: Remoting 173

134835-2 Ch09.F 8/31/01 8:10 AM Page 173

Usually, the SOAP envelope element looks something like this:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
/>

The first line of this code listing specifies the element name. The SOAP envelope
element is named, logically enough, Envelope. The Envelope element must be pre-
sent in every message. The SOAP-ENV part is a namespace alias. The SOAP-ENV alias
is used to provide an easier handle to the namespace defined in the second line.
xmlns is an XML attribute used to specify a schema. For the SOAP envelope, the
schema is defined at the URL: http://schemas.xmlsoap.org/soap/envelope/.
The envelope schema contains information that defines the header and body ele-
ments, as well as other attributes that affect the processing of the message. I
describe other attributes in a moment. The last line of the code listing specifies a
schema to be used for the encoding of the method call. The encoding schema
defines the data types that can be used with SOAP. Some of the data types are the
following:

� Doubles

� Strings

� Boolean values

� Floats

� Arrays

� Dates

The SOAP header is an optional element. If the header is present, the SOAP spec-
ification says that the header must be the first child of the Envelope element. A
SOAP header can be used for a number of purposes, each related to customizing the
SOAP message:

� Custom authentication

� Transaction processing

� Associating this message with other messages

� Routing the message

Implementing a custom authentication scheme is probably the first thing people
think of when they look at implementing SOAP headers. In this scenario, a receiv-
ing application can read the header information and authenticate the client before
processing the rest of the message. The rest of the scenarios mentioned previously

174 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 174

work in a similar fashion. The purpose of the header is to allow the remoting frame-
work to extend the message in whatever way it sees fit.

I want to back up for a moment and talk about the attributes from the SOAP-ENV
namespace I mentioned previously. This namespace defines two global attributes
that affect the header: actor and mustUnderstand. The actor attribute defines a
recipient (in the form of a URI) for which a particular header element is intended. A
SOAP message may not go directly from the sender to the ultimate receiver of the
message; somewhere along the way, other applications may need to read the mes-
sage and perform some processing on it before sending it on. The actor attribute
indicates what header elements are intended for what receivers. Once a receiver
reads a header element, it must either remote the element or replace it with another
intended for the next recipient.

The second attribute defined in the SOAP-ENV namespace is mustUnderstand.
This attribute is boolean (set it to 0 or 1). If it is set to 1, the receiver of the message
must either process the header element or completely reject the SOAP message and
return an error to the sender. This tag ensures that the processor of the message at
least attempts to process the element and does not just skip it. To get a feel for how
these attributes are applied to a SOAP header, I have given you a sample header in
Listing 9-1. For readability, I have not included the top-level Envelope element.

Listing 9-1: Example of a SOAP Header

<SOAP-ENV:Header>
<auth:CustomAuthentication
xmlns:auth=”http://www.myserver.com/schemas/auth/”
SOAP-ENV:mustUnderstand=”1”
SOAP-ENV:actor=”http://myserver.com/myOtherApp/somepage.asmx”>
MyAuthenticationMethod

</auth:CustomAuthentication>
</SOAP-ENV:Header>

Following the header is the mandatory Body element. The Body element can
include any of three types of child elements:

� Method call

� Method response

� Error response (fault)

A method call contains the name of the method, the name of the parameters, and
their values. The current version of the SOAP specification supports only one
method call per message.

Suppose a client makes a call that looks like the following on a method named
PlaceOrder:

Chapter 9: Remoting 175

134835-2 Ch09.F 8/31/01 8:10 AM Page 175

// method signature: PlaceOrder(string Sku, int CustomerNumber, int
Qty)
int OrderNumber = someobj.PlaceOrder(“sku123”, 1009, 3)

In this method call, the client is placing an order for customer 1009 and for 3
units for product number sku123. The body of the SOAP message for this call looks
like Listing 9-2.

Listing 9-2: Example of a SOAP Body

<SOAP-ENV:Body
<order:PlaceOrder
xmlns:order=”http://myserver.com/schemas/orders”>
<sku>sku123</sku>
<customernumber>1009</customernumber>
<qty>3</qty>

</order:PlaceOrder>
</SOAP-ENV:Body>

In Listing 9-2, the method parameter names and their values are converted to
elements beneath the method name element: PlaceOrder. When the server suc-
cessfully processes this request, it sends the response back in the form of a method-
response message. Method-response messages return method-return values and out
parameters to the sender. In the example, the PlaceOrder method returns an inte-
ger but no out parameters. The resulting SOAP message looks something like this:

<SOAP-ENV:Body
<order:PlaceOrderResponse
xmlns:order=”http://myserver.com/schemas/orders”>
<PlaceOrderResult>988</PlaceOrderResult>

</order:PlaceOrder>
</SOAP-ENV:Body>

The naming convention for a method call response is to add the word Response
to the end of the method name. A similar convention is used with the return value.
Instead of Response, Result is used to name the element that contains the return
value of the method call. If you have out parameters in the method call, they show
up as sibling elements to the result.

A fault message is the last child element that can be found in a body section. A
fault message is sent as the result of some sort of error that has occurred on the
receiver side of the transmission or as the result of some status information that
needs to be displayed. A SOAP fault element defines four subelements that make up
the fault message:

176 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 176

� faultcode

� faultstring

� faultfactor

� detail

The faultcode is an error code conceptually similar to the response code in the
HTTP protocol. The client or other software should use the faultcode to determine
the reason for the error programmatically.

The faultstring is similar to the error messages you may have seen from HTTP
from time to time. This element provides a human-readable error message for the
user or developer to view.

The faultfactor identifies the source of the error. This takes the form of a URI.
If the header element of the request message has specified an actor and the actor
has produced the error, the faultfactor points to the URI of the actor.

The detail element contains information specific to the processing of the body
of the message. If this element is not present, the receiver of the fault message can
assume that the body of the original request has not been processed. The following
is an example of a fault message:

<SOAP-ENV:body>
<SOAP-ENV:fault>
<faultcode>SOAP-ENV:VersionMismatch</faultcode>
<faultstring>invalid namespace for SOAP Envelope</faultcode>

</SOAP-ENV:fault>
</SOAP-ENV:body>

Remoting ServicedComponents
I mention previously that ServicedComponent-derived classes are automatically
remotable by virtue of being indirect children of the MarshalByRefObject class.
This means that any ServicedComponent-derived class can be marshaled by refer-
ence across the network. In this section, you develop three kinds of
ServicedComponent classes:

� A SingleCall component using SOAP and the HTTP channel

� A SingleCall component using the TCP channel

� A client-activated ServicedComponent

Chapter 9: Remoting 177

134835-2 Ch09.F 8/31/01 8:10 AM Page 177

SingleCall Component Using SOAP and HTTP
Start with a SingleCall ServicedComponent called CFoo. The code for this com-
ponent is shown in Listing 9-3.

Listing 9-3: SingleCall Component Using SOAP

Namespace RemoteComponent
{
using System.EnterpriseServices;
public class CFoo : ServicedComponent
{
public int PlaceOrder(string Sku, int CustomerNumber, int Qty)
{
// do some database work here to add the order
// return the order number
return OrderNumber;

}
}

}

As you can see, nothing is special about the CFoo class. The resulting assembly
name for this namespace is RemoteComponent. Things get interesting when this
component needs to be hosted. For this example, I use the Web server to host the
component. Because I am using the Web server, I also choose the HTTP channel and
the SOAP formatter. To host this component, a virtual directory must be created.
Virtual directories can be created by using the Internet Services Manager snap-in.
Assume that a virtual directory has been created on a server called
www.myserver.com. The name of the virtual directory is RemoteComponent. There
must be a directory called bin under the RemoteComponent directory. When a client
tries to access this component on the Web server, the remoting runtime looks in the
bin directory to find the assembly dll file. The last thing needed is the web.config
file. This configuration file is used by many applications such as ASP.NET pages.
For this example, the web.config file tells the remoting runtime what type of
server activation (SingleCall or Singleton) you want to use for this component.
The web.config file that I use for this example is shown in Listing 9-4.

Listing 9-4: Using web.config for Remoting

<configuration>
<system.runtime.remoting>
<application>
<service>
<wellknown mode=”SingleCall” type=”RemoteComponent.CFoo,
RemoteComponent”

178 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 178

objectUri=”/RemoteComponent/RemoteComponent.soap”/>
</service>

</application>
</system.runtime.remoting>

</configuration>

The real information conveyed here is in the wellknown element and its attrib-
utes. The mode attribute specifies the server-activation mode (in this example,
SingleCall). The type attribute specifies the fully qualified type name (namespace
+ class name) and the name of the assembly. Both the assembly name and the
namespace of the component are called RemoteComponent. The final attribute is the
objectUri. The RemoteComponent.soap file at the end of the URI does not exist.
When the Web server sees a request for a file with a .soap extension, it invokes a
handler. The handler for a .soap extension forwards the request to the remoting
runtime.

This is pretty much all it takes to host a component in Internet Information
Services. Notice that I do not specify a channel or a formatter. Because I am host-
ing the component in the Web server, the HTTP channel and the SOAP formatter are
assumed by the remoting runtime. The code in Listing 9-5 is for the client of the
RemoteComponent class.

Listing 9-5: RemoteComponent Class Client

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using RemoteComponent;

Public class ClientApp
{
public static void Main()
{
HttpChannel http = new HttpChannel();
ChannelServices.RegisterChannel(http);
Type trc = typeof(RemoteComponent);
RemoteComponent rc =
Activator.GetObject(trc,

“http://www.myserver.com/RemoteComponent/RemoteComponent.soap”);
int OrderNumber = Rc.PlaceOrder(“sku123”, 1009, 3);
Console.WriteLine(OrderNumber.ToString());

}
}

Chapter 9: Remoting 179

134835-2 Ch09.F 8/31/01 8:10 AM Page 179

Essentially, the client goes through a three-step process:

1. Create and register an HttpChannel.

2. Create a new instance of the RemoteComponent.

3. Use the RemoteComponent by calling the PlaceOrder method.

The Activator class is a static class from the System namespace. It can be used
to create objects that are either inside or outside of the current application domain.
The GetObject method defines the type of remote component created and the com-
ponent’s endpoint. The typeof() statement is a C# keyword that returns an object
of type System.Type. With the type information specified in the local copy of the
RemoteComponent assembly and the endpoint, the remoting runtime is able to find
and consume the remote component. Notice that the endpoint the client specifies is
the same path as that specified in the web.config file on the server. The remoting
runtime uses the path information on the client and server to match the request to
the RemoteComponent component. Because this is a server-activated component,
the component is not instantiated until the PlaceOrder method is called.

In Listing 9-5, the client specifies the endpoint and channel information in code.
You can include this information in a configuration file. In Listing 9-6, I have taken
this information out of the client’s code and placed it in a configuration file called
ClientApp.config.

Listing 9-6: ClientApp.config Configuration File

// filename: ClientApp.config
<configuration>
<system.runtime.remoting>
<application>
<client url=”http://www.myserver.com/RemoteComponent”>
<wellknown
type=”RemoteComponent.CFoo, RemoteComponent”

url=”http://www.myserver.com/RemoteComponent/RemoteComponent.soap”
/>

<channels>
<channel type=”HttpChannel, System.Runtime.Remoting”/>

</channels>
</application>

</system.runtime.remoting>
</configuration>

In this configuration file, I have created a well-known type:
RemoteComponent.CFoo. When the client starts, it instructs the remoting frame-
work to load the configuration file and to register CFoo as a well-known type on
the client. Because I have specified the HTTP channel, the remoting runtime

180 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 180

forwards requests to http://www.myserver.com/RemoteComponent/
RemoteComponent.soap over this channel. The new client code, shown in Listing
9-7, is greatly simplified.

Listing 9-7: Using ClientApp.config in the Client

using System;
using System.Runtime.Remoting;
using RemoteComponent;

Public class ClientApp
{
public static void Main()
{

RemotingConfiguration.Configure(“ClientApp.Config”);
CFoo foo = new CFoo();
int OrderNumber = foo.PlaceOrder(“sku123”, 1009, 3);
Console.WriteLine(OrderNumber.ToString());

}
}

The RemotingConfiguration class is used to configure the remoting framework
on behalf of the client. Once the configuration file is loaded, you are free to use the
remote class as if it were local.

SingleCall Component Using Binary
Formatter and TCP
Using the TCP channel on the client and server is not much more difficult than
using the HTTP channel. If you use the TCP channel, however, you must find a host
other than the Web server to host the component. For this example, I use a console
application to host the component. Usually, you want to host the component in a
Windows service so that someone does not need to be logged on to the server con-
sole, but for this example a console application adequately demonstrates the TCP
channel. You can use a configuration file on the component end to configure the
remoting framework. The configuration file for this process looks similar to the
web.config file I use earlier and is registered in a similar manner similar to the
way the client registers ClientApp.config file. Because I have already covered
how to use the web.config file, I do not repeat these steps in the next example.
Instead, I register a well-known type through code. The code for the console appli-
cation that hosts the component is shown in Listing 9-8.

Chapter 9: Remoting 181

134835-2 Ch09.F 8/31/01 8:10 AM Page 181

Listing 9-8: Console Application for RemoteComponent

Using System;
Using System.Runtime.Remoting;
Using RemoteComponent;
public class ComponentApp
{
public static void Main()
{
TcpChannel tcp = new TcpChannel(8000);
Type t = typeof(RemoteComponent.CFoo);
string uri = “tcp://www.myserver.com/RemoteComponent/”;
RemotingConfiguration.RegisterWellKnownServiceType(
t,
uri,
WellKnownObjectMode.SingleCall);

Console.WriteLine(“Listening for Requests on port 8000 ...”);
Console.ReadLine();

}
}

The port I have chosen for this example is 8000. The remoting framework listens
for requests coming in on this port. The call to RegisterWellKnownServiceType
registers the RemoteComponent as a SingleCall object. I place the last two lines in
the Main method so the application does not exit as soon as I register CFoo. If the
console application is not running, it cannot listen for requests.

If I continue with the previous client, ClientApp, I do not have to change any of
its code. To use the correct endpoint, channel, and port, I need to change only the
configuration file, as shown in Listing 9-9.

Listing 9-9: Using the TCP Channel from ClientApp.config

// filename: ClientApp.config
<configuration>
<system.runtime.remoting>
<application>
<client url=”http://www.myserver.com/RemoteComponent”>
<wellknown
type=”RemoteComponent.CFoo, RemoteComponent”
url=”tcp://www.myserver.com:8000/RemoteComponent/”
/>

<channels>
<channel type=”TcpChannel, System.Runtime.Remoting”/>

</channels>
</application>

182 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 182

</system.runtime.remoting>
</configuration>

The modifications to the configuration file change the URL of the component to
use the TCP protocol on port 8000 and the channel listing to a TcpChannel instead
of an HttpChannel. The fact that I do not break the original client code is one of
the benefits of using a configuration file to configure the remoting framework.

Notice that neither of these examples specifies a formatter. It is possible to mix
and match formatters and channels by using the remoting framework. When I spec-
ify a channel such as HttpChannel, the remoting framework associates a default
formatter. The default formatter for the HttpChannel is SOAP; the default format-
ter for the TcpChannel is the Binary formatter.

Client-Activated ServicedComponent
The CFoo class can be activated upon a client’s request. This is accomplished either
through a call to new or by using the Activator.CreateInstance method. For this
example, I choose the Activator.CreateInstance method. The server-side code
can remain untouched. You can host the component in any number of hosts such
as the Web server, a console application, or a Windows service. For this example,
assume you are hosting the component by using the Web server. The code for the
client is shown in Listing 9-10.

Listing 9-10: Client-Activated ServicedComponent Class

using System;
using System.Runtime.Remoting;
using System.Runtime.Channels;
using System.Runtime.Channels.Http;
using RemoteComponent;

Public class ClientApp
{
public static void Main()
{

RemotingConfiguration.Configure(“ClientApp.Config”);
CFoo foo = (CFoo) Activator.CreateInstance(Typeof(CFoo));
int OrderNumber = foo.PlaceOrder(“sku123”, 1009, 3);
Console.WriteLine(OrderNumber.ToString());

}
}

In Listing 9-10, the client loads the configuration file and calls one of the over-
loaded CreateInstance methods. When this method is executed, the creation
request goes to the remote component. The remote component’s constructor is

Chapter 9: Remoting 183

134835-2 Ch09.F 8/31/01 8:10 AM Page 183

called, and an ObjRef is passed to the client. When the remoting runtime on the
client receives the ObjRef, it creates the RealProxy, which, in turn, creates the
transparent proxy. Once the RealProxy creates the transparent proxy, it returns the
transparent proxy reference to the client.

CreateInstance has eight overloaded methods in all. Some of these overloads
allow you to create instances of the component without having to make a reference
to the assembly. In this case, the method returns an instance of a
System.Runtime.Remoting.ObjectHandle class. This class can be used for pass-
ing a reference to the RemoteComponent to application domains other than the
client’s application domain. Yet another overload of this method allows you to
specify arguments to a remote component’s constructor. For instance, if the
RemoteComponent class has a constructor other than the default, you can pass a
System.Object array to one of the overloads. Each element in the array represents
an argument to the component’s constructor.

Summary
The .NET Remoting Framework is a vast topic. A single chapter is really not enough
to cover all the ground. In this chapter, I have tried to give you an overview of the
basic components of the framework as well as related technologies such as SOAP.

As a COM+ developer using the .NET Framework, you have a number of options
for remoting your components. Because ServicedComponent-derived classes can
be made visible from COM clients, you have the option of using DCOM. As you see
in the Chapter 8, you have the option of using queued components to transport
method calls via MSMQ. As you see in this chapter, the .NET Remoting Framework
offers a third option for remoting your components. The .NET Remoting Framework
is much more extensible than either of the previous options. Less experienced
developers can get up and running faster by using the framework’s default func-
tionality, although more experienced developers can get down to the metal and
write their own formatters and channels.

184 Part III: Advanced COM+ Computing

134835-2 Ch09.F 8/31/01 8:10 AM Page 184

Chapter 10

The Future of COM+
and .NET

IN THIS CHAPTER

� New features of COM+ 1.5

� New features of IIS 6.0

� New features of MSMQ

SO FAR IN THIS BOOK, I have covered every major feature of COM+ in Windows 2000.
I thought it might be fun for you to get a sneak peak at the new features of COM+
in the next version of Windows 2000 Server, called Windows 2002 Server. At the
time of this writing, the next version of COM+ on Windows 2002 server is code-
named COM+ 1.5, although this name is likely to change before it goes out to the
public. In addition to covering the new features of COM+ 1.5, I give you the low-
down on the new features of IIS 6.0 and MSMQ. As you’ll see in this chapter, many
of these features center on improving the robustness of your Web applications.
Before I go on, I should point out to you that the information in this chapter comes
from the beta 2 version of Windows 2002. Some of the features described in this
chapter may not make it into the final version of the product. Conversely, some fea-
tures not mentioned in this chapter may appear in the product’s final release.

New Features of COM+ 1.5
As MTS and COM+ have matured, we have seen features added to the services pro-
vided for serviced components. COM+ 1.5 continues this trend. Many of its new
features provide a more reliable environment for applications. Some of its features
help you version and deploy your applications. Even as this chapter is being writ-
ten, Microsoft has included nine new features in beta 2 alone:

� COM+ applications as Windows NT Services

� Application partitions

� Application process dump

� Component aliasing
185

144835-2 Ch10.F 8/31/01 8:11 AM Page 185

� Configurable isolation levels

� Low-memory activation gates

� Process recycling

� Public and private components

� Application pooling

COM+ Applications as Services
Windows 2000 offers such operating-system services as IIS, the COM+ Event
System, and the Computer Browser services. Even the COM+ System package in
Windows 2002 has been configured to run as a service. Services can be configured
to start automatically (when Windows starts) or to start manually.

COM+ 1.5 offers a new activation option that allows a COM+ application to
become a Windows service application. Figure 10-1 shows the new options for this
feature in a COM+ application.

Figure 10-1: New service activation options

An application must be configured as a server application before it can be run as
a service. In Figure 10-1, I have checked the Run Application as NT Service option
to enable this application to run as a service. Once this change has been applied, I
can configure the service just as I configure other services in Windows.

When you click the Setup New Service button, you get the Service Setup dialog
box, shown in Figure 10-2. Here you can configure any of the usual service
options:

186 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 186

� Service name

� Startup type (manual or automatic)

� Error handling

� User account to run the service as

� Any dependencies on other services

Figure 10-2: The Service Setup dialog box

The service name is simply the name that shows up in the Services MMC snap-
in. If the service’s startup type is set to automatic, the service starts when the oper-
ating system starts. If the manual option is checked, on the other hand, an
administrator must go into the Services snap-in and start the service. The Error
Handling option is used to specify a level of severity should the service not start up.
Various actions can be taken to remedy the situation, based upon a level of sever-
ity. The user account that the service runs under can also be configured in this step.
Just as with any other service, you can choose to run the service as the local system
account or as another local-user account or domain-user account. At the bottom of
the dialog box shown in Figure 10-2, you have the option of specifying other ser-
vices on which the application depends. For instance, if your application is
accessed through IIS, you can specify that IIS is a dependency.

Once the application has been configured to run as a service, you are able to see
it in the Services snap-in. Figure 10-3 shows the NtServices application listed in the
Services snap-in. Although you cannot see the full description, this field is carried
over from the description field in the application.

Chapter 10: The Future of COM+ and .NET 187

144835-2 Ch10.F 8/31/01 8:11 AM Page 187

Figure 10-3: NtServices application as a Windows service

So when might this feature be useful? Your application may benefit from this
feature in a couple of scenarios. At some point, you may want an application to run
under the identity of the local system account. Although this may not always be
wise for security reasons, it may be something you need for other reasons. You may
want the application to start when the operating system starts. It’s wise to reboot
your servers when users are not trying to use them. This feature allows you to start
the application before user requests start coming in. This way, the first user to
request a component out of the application won’t be subject to the performance hit
of starting a server package. Along this line, you may want server applications that
contain pooled components to be configured as services. If the application starts as
a service, the component pool is populated (to the minimum value, of course) and
is ready for use. Again, the first user does not take a performance hit when the
server application starts and populates the component pool.

Application Partitions
Application partitions allow multiple versions of an application (server or library)
to be installed on one computer. Installing various versions of an application on a
computer allows you to configure various aspects of the package, such as security
settings and roles. If the application being partitioned is a server application, it can
be configured to run under various user accounts. Figure 10-4 shows the logical
relationship between an application and two application partitions. In this figure,
Application A is configured in Partitions A and B.

188 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 188

Figure 10-4: One application in two partitions

You should understand that the application is essentially copied from one parti-
tion to another. The components that reside inside the application do not change. It
is not necessary for you to change your components in any way when you create
an application partition. Depending on the client’s security credentials, COM+ will
service a component request from any one of the permitted application partitions.

You set up an application partition by first creating a partition inside the COM+
Application Partitions folder. The first step in creating a new partition is to give the
partition a name. In Figure 10-5, I call my new partition SalesAccounting. During
this step, a Partition ID is automatically assigned to the partition. The Partition ID
is a GUID like those assigned to any application, interface, or component. In addi-
tion to the Partition ID, a partition has four attributes similar in function to those in
an application. The partition attributes are the following:

� Partition name

� Partition ID

� Description

� Disable Deletion

� Disable Changes

COM+ Computer

Application Partition A

Application
A

Application Partition B

Application
A

Chapter 10: The Future of COM+ and .NET 189

144835-2 Ch10.F 8/31/01 8:11 AM Page 189

Figure 10-5: Creating a new application partition

Once the application partition is created, it is listed in the COM+ Partitions
folder. In Figure 10-6, you can see the new SalesAccounting partition listed in the
COM+ Partitions folder.

Figure 10-6: The new SalesAccounting partition

190 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 190

Applications can be created inside partitions just as any normal application is
created. Once an application has been created in a partition, it can be copied to
another partition. Different application partitions can be mapped to different users.
Users can be either local machine users or domain users.

You may have noticed in Figure 10-6 the Base Application partition. This acts as
a default partition for applications not assigned to a particular partition.

Partitions themselves can be organized into partition sets. Partition sets can be
created for local machine users or domain users. A partition set created on a
domain controller can be made available to domain users and groups. In an Active
Directory domain, users are mapped into Organizational Units (OUs). You can
define access to a partition set by using OUs. When a domain user requests an
application that is part of a partition set, the user’s OU is mapped to a partition set.
If the user’s OU cannot be mapped to a partition set, the user has access to applica-
tions in the Base Application partition only. A user’s domain identity also helps
COM+ determine the partition where an application is located. Incidentally, the
Base Application partition is part of every partition set by default.

Application Process Dump
A COM+ application can be configured to dump an image of its process upon appli-
cation failure. An administrator can manually dump a running application.
The dump is a snapshot of an application’s memory space at runtime. This infor-
mation can be used later to diagnose problems such as memory exceptions associ-
ated with the application. Figure 10-7 shows the Dump tab in an application’s
property dialog box. By default, COM+ dumps an application’s memory state to the
%systemroot%\system32\com\dmp folder. The number of dump images can be
configured in the Dump tab.

An application can be dumped at runtime. Here an administrator can take a non-
intrusive snapshot of a running application. A developer can view the dump at a
later point by using a tool such as the Windows debugger in the Platform SDK.

Component Aliasing
Component aliasing allows you to install multiple instances of a component in an
application or in multiple applications. When a component is aliased, it is given a
new ProgID and a new CLSID. An administrator or developer can optionally spec-
ify the new ProgID and CLSID, but the Component Services snap-in provides
default values. Figure 10-8 shows the Alias Component dialog box. Using this dia-
log box, you can specify the application in which the component is aliased.

Chapter 10: The Future of COM+ and .NET 191

144835-2 Ch10.F 8/31/01 8:11 AM Page 191

Figure 10-7: Application Dump tab

Figure 10-8: Alias Component dialog box

With component aliasing, a developer can alias a component in order to specify
multiple constructor strings, perhaps for use with different databases. Any compo-
nent property (for example, transaction support, activation characteristics, and the
level of concurrency) can be changed for an aliased component.

Configurable Isolation Levels
In Chapter 4, I talk about isolation levels in terms of COM+ transactions. The isola-
tion level determines the level of locking of resources during a transaction. The
higher the isolation level, the more restrictive the locking scheme. The highest iso-
lation level is Serialized. This is the only isolation level supported in COM+ on
Windows 2000.

192 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 192

The next version of COM+, on the other hand, allows the isolation level to be
configured to any of the following values:

� Any

� Read uncommitted

� Read committed

� Repeatable read

� Serialized

Choosing an isolation level lower than Serialized improves the performance and
throughput of applications. Be aware that choosing an isolation level other than
Serialized, however, may allow other readers of your data to see it in an inconsis-
tent state. A component must have a transaction attribute of Supported or higher
before the isolation level can be set.

Low-Memory Activation Gates
The purpose of the low-memory activation gate feature is to prevent components
from being created during low-memory conditions. When components are created
under low-memory conditions, problems can occur later in the application. If the
application has a memory leak, the leak can exhaust all available memory. When
this occurs, the application becomes unresponsive and must be shut down.

COM+ prevents low-memory activation for components by checking an applica-
tion’s virtual-memory usage against a threshold value. If the available virtual
memory falls below the threshold value, COM+ fails the client’s creation request.
COM+ predetermines the threshold value for all applications. The client cannot
change the value of the threshold.

Process Recycling
I have experienced countless applications that have become unresponsive. When an
application becomes unresponsive, the only thing you can do is go into the
Component Services Explorer and shut it down. An application can become unre-
sponsive for a number of reasons. Unless you are collecting runtime information
from the application as this is happening, it can be impossible to determine the
problem.

Running your applications in a managed environment such as .NET can reduce
some of these problems. But face it; if someone writes bad code — managed or not —
his or her application is going to fail, and someone is going to have to shut down
the application periodically.

Microsoft understands that the need to shut down an application from time to
time is a reality. Process recycling can be used to shut down an application that has
become unresponsive. An administrator or developer can use a number of criteria
to determine when an application should be shut down:

Chapter 10: The Future of COM+ and .NET 193

144835-2 Ch10.F 8/31/01 8:11 AM Page 193

� Lifetime limit

� Memory limit

� Expiration timeout

� Call limit

� Activation limit

The lifetime limit specifies a timeout (in minutes) for an application. When an
application starts, COM+ starts the timeout. As soon as the application has run for
the allotted time specified by the lifetime timeout, COM+ shuts it down. The next
client instantiation request starts the application, and the process restarts.

Applications whose memory usage exceeds the memory-limit criteria are also
shutdown. The application is shut down if its memory usage exceeds the limit for
more than one minute. The memory limit can be set to any value between 0 and
1,048,576 kb.

COM+ uses the expiration timeout value to determine when a process that has
been recycled should be shut down. The expiration timeout value differs from the
lifetime limit in that the former applies to a recycled process whereas the latter
applies to a process that has not been recycled yet.

The call limit determines the number of calls an application services before
being shutdown. Calls can be instantiation requests for a component, or they can
be method calls.

The activation limit specifies the number of component creations the application
can serve before being shut down. Components that use JITA may need a higher
limit than components that service multiple method calls with the same component
instance.

To accommodate this new feature, Microsoft has added a tab in the Application
Properties dialog box. Figure 10-9 displays the new Pooling & Recycling tab in
Component Services Explorer. In the Application Recycling section, the recycling
criteria are set to their default values.

Application Pooling
You may in Figure 10-9 another section called Application Pooling. This feature
allows multiple Windows processes to act as one application. When an application
starts, COM+ creates as many instances of the dllhost.exe process as the pool size
defines. As client requests come in, they are equally distributed across these
instances of dllhost.exe. Figure 10-10 demonstrates how requests from three
clients are serviced from four instances of dllhost.exe— together acting as a sin-
gle application. In this illustration, any instance of dllhost.exe can service any
client request.

194 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 194

Figure 10-9: Pooling & Recycling tab in Component Services

New Features of IIS 6.0
It seems that every application today uses a Web server in one way or another.
Many COM+ applications use IIS to make components available to users on the
Internet or on a company Intranet. The features of IIS and COM+ are closely
related. In fact, some of the features in IIS come directly from COM+. Because such
tight integration exists between IIS and COM+, it is particularly relevant to cover
the new features of IIS 6.0.

IIS 6.0 offers many enhancements that administrators and developers can lever-
age. Often, features targeted toward administrators are of interest to developers as
well. Although I do not cover all of the new features of IIS, I do cover those that
developers are most interested in. The features discussed here can help you increase
the performance, scalability, and reliability of your applications.

� New server architecture

� Application pools and Web gardens

� Server modes

� Worker-process management

� ASP template cache tuning

� XML support for the metabase

Chapter 10: The Future of COM+ and .NET 195

144835-2 Ch10.F 8/31/01 8:11 AM Page 195

Figure 10-10: Application pooling

New Server Architecture
In IIS 5 (Windows 2000 version), the core functionality of the Web server resides in
a service called W3SVC. In IIS 6.0, the architecture of the W3SVC service has been
modified. The new Web-server architecture consists of four new or modified
components:

� New kernel mode driver: http.sys

� Web Administration Service (WAS)

Client Client Client

COM+
Application

Pooling

COM+ Application
Pool Size = 4

dllhost.exe

dllhost.exe

dllhost.exe

dllhost.exe

196 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 196

� XML metabase

� Worker processes for applications

Figure 10-11 illustrates the order in which these components are used to service
a request. When a request comes in for a URI, http.sys sees the request and passes
it up to the Web Administration Service (WAS). WAS uses data from its XML
metabase to apply rules or settings to the request. WAS then passes the request to
the Web application. The Web application can be run from a separate worker
process.

Figure 10-11: IIS 6.0 W3SVC architecture

Worker Process

Web Administration Service (WAS)

In Memory XML
Metabase

Client

H
tt

p
Re

qu
es

t

Http.sys

Chapter 10: The Future of COM+ and .NET 197

144835-2 Ch10.F 8/31/01 8:11 AM Page 197

One of the more exciting (at least to me) enhancements to IIS is the use of a ker-
nel mode driver called http.sys. This file sits directly on top of the TCP/IP stack,
which means it can handle requests much faster than older versions of IIS.
http.sys has several responsibilities.

� Taking HTTP requests off the wire and passing them through the Web
server

� Throttling bandwidths of HTTP requests

� Logging texts

http.sys implements a response-caching mechanism. When a request for a par-
ticular URI comes in, http.sys checks its own internal cache to see if it has already
sent a response for that URI. If the requested URI is found in the cache, http.sys
services the request from cache without forwarding the request to the Web applica-
tion. This results in a much faster response time, as IIS does not have to switch from
kernel mode to user mode to process the request. This enhancement even allows
output from Active Server Pages to be cached in this manner. Figure 10-12 shows
two clients requesting the same resource (http://myserver.com/someApp/
default.asp). Assume for the purposes of this discussion that Client A’s request
finishes before Client B’s request reaches the Web server. When Client B’s request
comes in, http.sys already has output from default.asp in its cache. Client B’s
request is serviced from cache. If Clients C, D, and F exist, each requesting the same
default.asp page, their requests are serviced from cache as well. This allows the
cost of Client A’s request to be spread among all clients, resulting in greater
scalability.

http.sys implements a request-queuing mechanism as well. Requests are
queued if IIS cannot process older requests before new ones come in. As requests
pile up, http.sys queues them into application-specific pools. IIS returns an HTTP
error to the user once a request queue fills for an application. In Figure 10-13,
requests from Clients A, B, C, and D fill the request queue for an application called
someApp. Because Client D fills the queue, Client E’s request cannot be serviced. As
a result, Client F receives an error.

Web Administration Service (WAS) is the other major component of the W3SVC
service. Like http.sys, WAS runs in kernel mode, which means it can process
requests faster than if it were running in user mode. WAS is responsible for config-
uring both http.sys and application-worker processes. WAS gets its information
from the IIS metabase. Previous versions of IIS stored the metabase in a binary file.
The metabase contains most of the configuration information for the Web server
and its applications. For instance, the metabase contains information such as
whether or not an application should be run out of process and how many worker
threads to use to process client requests. In IIS 6.0, the metabase is stored in an
XML file that can be edited with Notepad or any other text editor.

198 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 198

Figure 10-12: http.sys response cache

The worker process appears at the top of Figure 10-11. Worker processes are the
workhorses of the Web server. They run the ASP or ISAPI applications. In the pre-
vious examples, the someApp application can be configured to run inside a worker
process. The code for default.asp or any other page is executed inside this
process. Because IIS separates Web applications from the core server process, it is
able to provide a much more stable environment than if it were running user code
in its own processes. Although this model provides better stability, it decreases per-
formance because of the process switch that must occur between the Web server
and the worker process.

Worker Process:
someApp

Cache After
(contains default.asp)

Cache Before
(no default.asp)

ClientA ClientB

Http.sys

Response populates cache

Chapter 10: The Future of COM+ and .NET 199

144835-2 Ch10.F 8/31/01 8:11 AM Page 199

Figure 10-13: http.sys request queue

Application Pools and Web Gardens
In IIS 4 on Windows NT, Web applications can run either in process (with the Web
server) or out of process in an instance of mtx.exe. IIS 5 on Windows 2000 extends
that concept by allowing applications to be pooled in an instance of dllhost.exe.
In IIS 5, only one pool exists. Applications can run in process, out of process, or in
the sole application pool. The advent of IIS 6 provides for multiple application
pools. Figure 10-14 shows how multiple applications can be run within an applica-
tion pool. An application pool can run one or more applications.

someApp
Request Pool

Client A Client B Client C

Request
for defa

ult.a
sp

Requ
est

 fo
r d

efa
ult.a

sp

Re
qu

es
t f

or
 d

ef
au

lt.
as

p
Re

qu
es

t
fo

r d
ef

au
lt.

as
p Request for default.asp

Client D Client F

request rejected

Http.sys

Request Queue

Client A's Request

Client B's Request

Client C's Request

Client D's Request

200 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 200

Figure 10-14: Application pools and Web applications

Application pooling is a compromise between stability, performance, and scala-
bility. One of the best ways to help a Web server become stable is to run Web appli-
cations out of process. If something in a Web application goes terribly wrong, only
the process running the application needs to be shut down — not the entire Web
server. As with any compromise, however, the approach has its drawbacks. When a
request is made to an out-of-process Web application, that request must cross
process boundaries. This can be an expensive endeavor. On some occasions, the
Web server must start a worker process to handle a request. This can be even more
expensive in terms of performance. Running too many applications out of process
can also degrade scalability. As more worker processes start, the operating system
must commit resources (CPU time and memory) to handle each process. Pooling
provides a middle ground by enabling applications to run out of process while still
reducing the number of worker processes needed to handle requests. Because one
worker process can service requests for multiple applications, the Web server does
not need to create as many processes as it does if each application runs in its own
process.

Application Pool

Web
Application

Web
Application

Application Pool

Web
Application

Application Pool

Web
Application

Web
Application

Web
Application

Web
Application

Chapter 10: The Future of COM+ and .NET 201

144835-2 Ch10.F 8/31/01 8:11 AM Page 201

Some of my colleagues have said that pooling simply moves the problem from
the Web server to another process. The argument goes as follows: If a bad Web
application can take down the Web server, it can take down the pool’s process and,
in turn, take down all the other applications in the pool. This is certainly a com-
pelling argument. However, this argument misses two important points about pool-
ing. First, Web servers do not serve up just applications. They also serve up static
pages. Static pages rarely take down a Web server. As such, static pages can safely
be served in process. Given the choice, I think most administrators would rather be
able to serve static pages than none at all. Second, in IIS 6.0, there can be multiple
pools. One bad application does not have to take down the Web server or other
application pools. If applications are pooled correctly, the only applications taken
down when a pool goes down are those dependent on the failing application. IIS
6.0 extends the concept of pooling even further by introducing a feature called Web
gardens. A Web garden is an application pool that multiple worker processes ser-
vice. Web gardens provide fault tolerance for application pools. If an application
causes a worker process to halt, other worker processes in the garden can pick up
the extra requests. Figure 10-15 shows the relationship between worker processes
and Web gardens. A worker process inside a Web garden can service any client
request.

Figure 10-15: Worker processes and Web gardens

IIS 6.0 offers an additional feature that applies to application pools. This feature
is known as Rapid Fail Protection. When worker processes in a pool fail repeatedly,
IIS disables the application. Once an application has failed and IIS has disabled it,
http.sys returns an error message. The error is an HTTP 503 error response which
tells the client that the requested service is unavailable. The feature is useful
because it prevents a failing application from consuming too many resources.

Worker
process

Worker
process

Worker
process

Worker
process

Web Garden

202 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 202

Server Modes
IIS 6.0 can be configured to run in two modes: standard and dedicated application.
Standard mode is intended to be used for Web servers that must provide backward
compatibility for applications that have been migrated from IIS 5. Some applica-
tions, such as ISAPI (Internet Server API) filters, which read raw data coming in
from the client, must be run on a standard mode IIS 6.0 server.

In dedicated-application mode, all applications run out of process. Each applica-
tion and site runs in an application pool. Because isolation can be achieved through
the use of pools, IIS 6.0 can provide better scalability than earlier versions of IIS
while still providing stability.

Worker-Process Management
You should be getting the picture now that worker processes are one of the most
important components of IIS 6.0. IIS 6.0 offers a number of features aimed at
improving the stability of worker processes. Some of the more significant features
are the following:

� Worker-process recycling

� Worker-process identity

� Health monitoring

� Idle timeout

� On-demand start

� Processor affinity

Worker-process recycling behaves the same as process recycling in COM+. IIS
worker processes can be configured to restart based on a number of criteria:

� Elapsed time

� Number of requests served

� Predetermined schedule

� Response to a ping

� Virtual memory usage (think COM+ memory gate)

When IIS determines that a worker process must be recycled, it allows the failing
process to finish serving the requests on which it is currently working. No new
requests are submitted to the worker process at this time. While IIS is waiting
for the worker process to finish processing requests, it starts a new worker process
to replace the old one. Once the old worker process is finished processing, it
is destroyed. In some situations, the worker process may not be able to finish

Chapter 10: The Future of COM+ and .NET 203

144835-2 Ch10.F 8/31/01 8:11 AM Page 203

processing its requests. In this situation, IIS waits a configurable amount of time
before it destroys the process. Shutting down the worker process and starting a new
process is referred to as restarting.

Web applications can be configured to run under a specific user identity, just as
COM+ applications can. In previous versions of IIS, a Web application either ran as
the local system account (or whatever account IIS was running as) or a default user
account (IUSR_MachineName or IWAM_MachineName). This feature can be used to
provide more or less access for an application, depending on your needs.

The ping mentioned previously is a service of WAS. It enables WAS to provide
health-monitoring capabilities to worker processes. WAS keeps an open communi-
cation channel to each worker process on the server. Periodically, WAS checks to
see if the communication channel is open. If WAS determines that the worker
process has dropped the channel, it assumes that the worker process can no longer
service requests. When this happens, the worker process restarts.

Worker processes not doing any work consume server resources needlessly. A
worker process can be configured to shut down after a configurable period of inac-
tivity. This is a feature known as the idle timeout. Incidentally, this is also a feature
that COM+ (on Windows 2000) supports for applications.

The on-demand start feature of IIS 6.0 allows worker processes to start when the
first request comes in from a client. The alternative is for each worker process to
start when the Web server or operating system starts. This can an inefficient use of
resources if extra worker processes are sitting around waiting to time out. The first
client to request a resource from a worker process takes a significant performance
hit. The initial hit is due to the worker process starting up. The cost of this hit can
be justified, as it can be spread across multiple client requests.

Worker processes can be configured to run on a specific processor and on that
processor only. This is known as processor affinity. Processors have an internal
cache to store data. An application can get a performance boost if the CPU it is run-
ning on can get its data from this cache rather than going to memory or disk.
Binding a worker process to a CPU increases the chances that the CPU will use data
from the cache rather than from memory.

ASP Template Cache Tuning
The ASP template caching feature pertains to traditional ASP, not ASP.NET pages.
When a request for an Active Server Page is made, the ASP engine must be invoked
to compile the page, run the code, and produce the output. All of this can be a
rather expensive endeavor, especially if you are dealing with an ASP that has lots
of code. The ASP template caching feature saves the compiled output of an ASP to
disk. As with on-demand start, the first client to request a page takes an initial per-
formance hit while the page is compiled. However, as long as the page does not
change, IIS services subsequent requests from the precompiled page.

204 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 204

XML Support for the Metabase
Usually, when a developer gets excited and starts talking about new features of a
product, the last thing he or she talks about is something such as the metabase. The
metabase is really more the realm of an administrator. However, a developer who
understands what the metabase can do for applications is much better off than one
who lets metabase issues slide.

The metabase contains most of the configuration information for the Web server
and its applications. In earlier versions of IIS, the metabase was stored in a binary
file that could be read only with a tool such as MetaEdit (Platform SDK) or by writ-
ing an application that used the IIS administration library. To make life a little eas-
ier, IIS 6.0 stores its metabase in an XML file. XML, as you probably know, can be
saved as a simple text file that can be read with any text editor, such as Notepad.

Several new features have popped up in IIS 6.0 to support the XML version of
the metabase:

� Editing the metabase while IIS is running

� Metabase history

� Backing up the metabase

� Server-independent metabase backups

As noted previously, the WAS uses the metabase to configure http.sys and Web
applications. It does this by reading the most current copy of the metabase and cre-
ating an in-memory representation of it. If an administrator edits the metabase
while IIS is running, a feature of the operating system notifies IIS that the file has
changed. When this happens, WAS re-reads the metabase and applies the new
changes. The benefit of this feature is that the Web server does not need to restart
in order for changes to be applied. This can help reduce the Web server’s down
time.

Each time an administrator modifies the metabase file, IIS increases the version
number of the file and copies the old version to a history folder. Each file in the his-
tory folder is also marked with a version number so that the administrator can go
back to a previous version of the metabase if needed. This feature provides a safe-
guard to accidental corruption or misconfiguration of the metabase.

Three methods exist for backing up a metabase in IIS 6.0:

� Secure backup

� Insecure backup

� Legacy backup

A secure backup can be secured with a password. The password is needed to
restore the metabase, should the need arise. An insecure backup does not require a
password. At the time of this writing, a legacy backup can be done only program-
matically. Backups can also be made server independent. A server-independent

Chapter 10: The Future of COM+ and .NET 205

144835-2 Ch10.F 8/31/01 8:11 AM Page 205

metabase can be useful for restoring IIS configuration information to a newly
installed operating system. An administrator can restore the backup metabase,
rather than configure all the settings by hand.

New Features of MSMQ
In Chapter 8, you see how MSMQ provides the underlying transport mechanism for
queued components. The version of MSMQ you deal with in that chapter is 2.0.
Windows 2002 will ship with a new version of MSMQ — 3.0. This version has a
number of enhancements of interest to developers and administrators:

� LDAP support

� Distribution lists

� Queue aliases

� Message triggers

The LDAP support in MSMQ 3.0 allows an MSMQ client to query a domain con-
troller for MSMQ-related information. In MSMQ 2.0, MSMQ had to be installed on
a domain controller to support integration with Active Directory. In an Active
Directory installation, a MSMQ client talked to the MSMQ server installation on the
domain controller to query for public queues and the like. By using LDAP, an
MSMQ 3.0 client can query a domain controller for public queues without having
to go through an MSMQ server on the domain controller.

Distribution lists allow a message to be sent to a list of message queues or other
distribution lists. A distribution list in this sense is not like a distribution list for
e-mail. A distribution list in this sense can contain only public queues, aliases, and
other distribution lists.

A queue alias is a pointer inside Active Directory to another public or private
queue. In Chapter 8, I state that public queues are published or advertised in Active
Directory, but private queues are not. Private queues are accessible only if you
know the queue name and the name of the machine that owns the queue. The new
queue alias feature of MSMQ allows a private queue to be advertised inside Active
Directory and included in distribution lists.

The message triggers feature enables a developer or administrator to associate an
action with a set of criteria for an incoming message. The action can be launching
another application or even creating a component and calling a method. Together,
the action and the message criteria form a rule. If a trigger is associated with a
queue, every message that comes in on the queue causes the trigger to fire. The
action is taken only if a message meets the trigger’s criteria. Previously, triggers
were available only as add-ons in the Platform SDK.

206 Part III: Advanced COM+ Computing

144835-2 Ch10.F 8/31/01 8:11 AM Page 206

Summary
If this chapter has whetted your appetite for Windows 2002, you are not alone. I
want many of the features, such as process recycling and pinging. You may have
noticed that many of the features in IIS and COM+ are quite similar, as IIS gets
many of it features from COM+. These two technologies have been interlinked for
several versions now.

Chances are that some of these features will not make it into the final release of
the product. Other features, such as support for the .NET Common Language
Runtime, not covered in this chapter, may be added before the final release.

Chapter 10: The Future of COM+ and .NET 207

144835-2 Ch10.F 8/31/01 8:11 AM Page 207

144835-2 Ch10.F 8/31/01 8:11 AM Page 208

Appendix A

What’s on the CD-ROM?
THIS APPENDIX PROVIDES YOU with information on the contents of the CD-ROM that
accompanies this book.

The CD-ROM contains all of the source code from the book as well as a demon-
stration application called OfficeMart. OfficeMart demonstrates several COM+ tech-
nologies covered in the book. An electronic, searchable version of the book that can
be viewed with Adobe Acrobat Reader is also included on the CD-ROM.

System Requirements
Make sure that your computer meets the minimum system requirements listed in
this section. If your computer doesn’t match up to most of these requirements, you
may have a problem using the contents of the CD.

For Windows 2000, Windows XP Beta 2, or Windows NT 4.0:

� PC with a Pentium II processor running at 450 MHz or faster (600 MHz
recommended)

� At least 96MB of RAM for Windows 2000 Professional (128MB recom-
mended), 192MB for Windows 2000 Server (256MB recommended)

� 500MB Disk Space on system drive, 2.5GB on installation drive

� Operating System: Windows 2000, Windows XP Beta 2, or
Windows NT 4.0

� Video: 800 × 600, 256 colors (high-color 16-bit recommended)

� Mouse: Microsoft Mouse or compatible pointing device

� A CD-ROM drive — double-speed (2x) or faster

In addition to the requirements listed above, you will need 1MB of additional
hard disk space to install the code examples from the chapters and appendices as
well as the OfficeMart application from the CR-ROM.

209

4835-2 AppA.F 8/31/01 8:11 AM Page 209

Using the CD with Microsoft
Windows
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. Open Windows Explorer (explorer.exe).

3. Copy the OfficeMartWeb folder to your Web server’s root folder.

4. Right click on the OfficeMartWeb folder. If the “Read-Only” check box in
the attributes section is checked then uncheck it.

5. When you click the OK button, you will be asked if you want to apply the
changes to the OfficeMartWeb folder only or if you want apply the
changes to the OfficeMartWeb folder and all subfolders and files. Choose
the “Apply changes to this folder, subfolders and files” option.

6. In Windows Explorer, navigate to OfficeMartWeb\bin and run
RegOfficeMart.bat.

What’s on the CD
The CD-ROM contains source code examples, applications, and an electronic ver-
sion of the book. Following is a summary of the contents of the CD-ROM arranged
by category.

Source code
Every program in any listing in the book is on the CD in the folder named
BookExamples.

OfficeMart Demo Application
The OfficeMart demo application demonstrates the use of several COM+ technologies:

� Queued Components

� Distributed Transactions

� Loosely Coupled Events

� Just In Time Activation

� Component Construction

� Object Pooling

210 Appendixes

4835-2 AppA.F 8/31/01 8:11 AM Page 210

Other technologies used by OfficeMart (not included on the CD-ROM):

� Microsoft SQL Server 2000

� Active Server Pages .NET

OfficeMart is an imaginary office supply company with a business-to-consumer
site on the Internet. This application allows customers on the Internet to order
office supplies. Customers navigate to the order entry ASP .NET page and enter
their customer IDs, the SKU number of the product they wish to purchase, and the
quantity. This application focuses strictly on how COM+ services can be used in
interesting ways in order to solve the problem of taking the customers’order, apply-
ing some business logic, and then either processing or rejecting the order. In order
to focus on the COM+ technology, I have eliminated the typical things you would
find in a B2C Web site:

� Authorization and Authentication Mechanism

� Product Catalog

OFFICEMART ARCHITECTURE
The architecture of the OfficeMart application has been kept simple so that you and
I can focus on the COM+ technologies used by the application. Aside from a few
Active Server Pages .NET pages, the OfficeMart architecture consists of two pieces:
the Microsoft SQL Server database, and the COM+ Library. Both of the pieces of the
OfficeMart architecture are explained below.

� Database: There are two databases in the OfficeMart application:
Inventory, and OfficeMart. The Inventory database contains a single table
called Products. This table holds the product data for every product sold
on the Web site. The OfficeMart database holds the customer information
and the orders information. For readability, no user-defined stored proce-
dures have been added to the database. All SQL code is in-line with the
application so you can tell more readily what is going on.

� COM+ Library: The OfficeMartLib project contains the OfficeMartLib
namespace, which holds all of the COM+ components used in the
application.

� Orders class: This class contains one method that allows the ASP .NET
page to submit an order. Orders is a Queued Component. The idea is
that the Orders class would run on an application server separate from
the Web server hosting the Web site. The Queued Component architec-
ture allows orders to be submitted asynchronously. This provides better
scalability as mentioned in Chapter 8.

Appendix A: What’s on the CD-ROM? 211

4835-2 AppA.F 8/31/01 8:11 AM Page 211

� Customers and Products classes: The Customers and Products
classes contain methods to update the customer’s credit and adjust the
product inventory levels (respectively) during the purchase process.
These are transactional components that operate inside of the Orders
class’s transaction.

� VerifyCustomer and VerifyProduct classes: These classes verify that
the customer exists, the product has enough available quantity, and so
on. These are not ServicedComponent classes. It may be tempting to
move their logic into their respective ServicedComponent classes. The
logic contained in these classes is not transactional in nature. If the
Verify classes were consolidated with their respective customers and
Products classes, no transactional work would incur the overhead of
the distributed transactions. Not only would object creation time be
longer, database locks would also be heavier.

� InventoryConn and OfficeMartConn classes: These classes are pooled
components that manage a connection to one of the two application
databases. These classes are used by the Verify classes in order to
improve performance. I am making the assumption that I can open a
database connection within 100 ms.

� OrderEvt, CustomerSubscriber, and AdminSubscriber: OrderEvt is
a COM+ event class. An event (think method) is raised when an order
fails, and when one is successfully submitted into the database. The
CustomerSubscriber uses this event to notify the customer (via
e-mail) upon the success or failure of the orders. The AdminSubscriber
logs a successful order as an informational message in the event log.
An unsuccessful order is logged as an error message in the event log.
I implemented an event class here to provide an easy way for addi-
tional functionality to be plugged in to the application. As different
departments throughout the company decide that they want to be
notified about orders, all a developer has to do is implement another
subscriber. For example, a subscriber could be written to notify the
Accounting department when a customer without sufficient credit
attempts to purchase items.

Electronic version of C# COM+ Programming
The complete (and searchable) text of this book is on the CD-ROM in Adobe’s
Portable Document Format (PDF), readable with the Adobe Acrobat Reader (also
included). For more information on Adobe Acrobat Reader, go to www.adobe.com.

212 Appendixes

4835-2 AppA.F 8/31/01 8:11 AM Page 212

Troubleshooting
If you have difficulty installing or using the CD-ROM programs, try the following
solutions:

� Check location of OfficeMartLib.dll. The OfficeMartLib.dll assem-
bly must be located in OfficeMartWeb\bin. The assembly must also be
installed in the Global Assembly Cache.

� Verify that all services are running. The following services must be run-
ning in order for the OfficeMart application to work correctly: World Wide
Web Publishing Service (IIS), SMTP Service, COM+ Event System,
Distributed Transaction Coordinator (DTC) Service, and SQL Server.

� Verify that the SQL Scripts ran correctly. If the SQL scripts ran properly,
you should see a Products table in the Inventory database. The OfficeMart
database should contain a Orders and Customers table.

If you still have trouble with the CD, please call the Hungry Minds Customer
Service phone number: (800) 762-2974. Outside the United States, call (317)
572-3993. Hungry Minds will provide technical support only for installation and
other general quality control items; for technical support on the applications them-
selves, consult the program’s vendor or author.

Appendix A: What’s on the CD-ROM? 213

4835-2 AppA.F 8/31/01 8:11 AM Page 213

4835-2 AppA.F 8/31/01 8:11 AM Page 214

Appendix B

The COM+ Shared
Property Manager

IN CHAPTER 4, I talk about resource dispensers. I describe resource dispensers as
components responsible for maintaining a pool of volatile resources, such as a pool
of database connections or threads. That discussion focuses primarily on a resource
dispenser’s role in a transaction. The COM+ Shared Property Manager (SPM) is
another type of resource dispenser. Instead of managing database connections, the
SPM manages memory. Managed memory can be used to store state among com-
ponents. The SPM provides protected access memory for multiple components.

Until this point, you have manipulated most COM+ services through attribute-
based programming. The COM+ SPM is one of the few services that do not use
attributes. The object model is strictly API-based. By API-based, I mean you utilize
services through System.EnterpriseServices classes and their methods.

Before you get into the SPM API, take a look at what life is like without it by
examining some of the pitfalls that can occur when two or more threads access the
same shared memory.

Sharing Memory among Threads
In C# applications, memory can be shared among threads by using the static
modifier. The examples in this section access global variables that have been
declared with the static modifier. To understand the code in this section, you
should have a solid understanding of the static modifier. In case you don’t, I give
you an introduction to it next.

Static Modifier
The purpose of the static modifier is to provide a means of global access to a
shared region of memory. The static modifier can be applied to any of the follow-
ing constructs:

� Methods

� Properties

215

4835-2 AppB.F 8/31/01 8:11 AM Page 215

� Operators

� Fields

� Constructors

Static types are not tied to any instance of a class, struct, or other type. A good
example of this is the ContextUtil class. The properties and methods of this class
are static. Have you ever seen me create an instance of the ContextUtil class? No.
Static types need to be accessed through their class or struct name only. In the case
of the ContextUtil class, you can get the context ID by calling the static
ContextUtil.ContextId property.

Figure B-1 shows the relationships among static types and the threads that
access them. Any thread within the application can access any type that has been
declared static.

Figure B-1: Relationships among threads and static types

Memory Conflicts and the static Modifier
The static modifier is a useful construct that can be perfectly safe to use—assuming
you know the pitfalls. In general, the problem with shared memory is that it is not
protected from simultaneous access from multiple threads. This is the whole point of
the SPM in COM+. To understand the value of the COM+ SPM, look at an example

Win32 Process

Static types
in memory

Thread

ThreadThread

216 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 216

application that uses static fields of a class to share memory. After I cover the
SPM API, I come back to this example and fix its problem by using COM+ shared
properties.

The code in Listing B-1 uses the Thread class from the System.Threading
namespace. This class has one constructor that takes a ThreadStart delegate as an
input. The ThreadStart delegate is a pointer to a method with no parameters and
a void return type. Delegates are creatable types themselves. In the Thread con-
structor, I create a new instance of the ThreadStart delegate, passing in a method
name. The method I pass to the ThreadStart constructor is executed when the
Thread.Start method starts the thread. Once I have created the two threads (t1
and t2), I am free to start them by calling the Thread.Start method. It is possible
that the thread executing the Main method may exit before the two new threads
finish their work. In fact, in this code example, it is quite likely. To prevent this, I
call Thread.Join on each of the threads. This method forces the caller to block
until the thread has finished its work.

Listing B-1: Problems with accessing shared memory with multiple threads

using System;
using System.Threading;

namespace StaticProperties
{
public class CApp
{
public static void Main()
{
// create two new thread classes
Thread t1 = new Thread(new ThreadStart(Start1));
Thread t2 = new Thread(new ThreadStart(Start2));

// start each thread
t1.Start();
t2.Start();

// wait for each thread to finish
t1.Join();
t2.Join();

// print the value of iCount
Console.WriteLine(CStatic.iCount.ToString());

}

public static void Start1()
{

Continued

Appendix B: The COM+ Shared Property Manager 217

4835-2 AppB.F 8/31/01 8:11 AM Page 217

Listing B-1 (Continued)

CStatic.iCount = 2;
int iSomeValue = 4;
// force the thread to sleep so the second thread can
// interrupt its work and change the value of iCount
Thread.Sleep(500);

int iResult = iSomeValue / CStatic.iCount;
}

public static void Start2()
{
CStatic.iCount = 0;

}
}

public class CStatic
{
public static int iCount;

}
}

The two threads — t1 and t2— try to access the same static integer value:
iCount. The integer is a member of a class called CStatic. The first thread (t1)
attempts to divide iSomeValue by iCount. The second thread changes the value of
iCount to zero before the first thread can make its computation. The call to
Thread.Sleep forces the first thread to sleep for half a second. When the first
thread goes to sleep, it provides a chance for the second thread to execute and
change the value of iCount to zero.

In the Main method, once I start each of the threads, I must call Thread.Join for
each of them. This forces the thread executing the Main method to wait until both
of the other threads have finished their work.

The last line in the Main method is never executed. When the first thread goes
to sleep, the second thread changes iCount to zero. When the first thread resumes
its execution, it tries to divide iSomeValue by zero. This raises an System.
DivideByZeroException.

I admit that this is a rather contrived example. Indeed, it is written to fail. In
practice, these types of problems are not always obvious when you first release an
application to a group of users. It may take days or weeks before you see this type
of problem occur. However, when it does occur, it may take much longer to resolve.
If the first thread is able to lock the iCount field somehow when it starts and to
release the lock when it finishes, the second thread is not able to change iCount to
zero. Fortunately, the COM+ SPM provides you with such a locking mechanism. But
before you can solve this problem, you must learn to use the SPM.

218 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 218

Shared Property Manager API
COM+ organizes shared properties into groups. These groups provide a namespace
that organizes the properties for a process. In addition, groups help reduce the
number of possible naming conflicts among properties. For instance, a group can-
not have two properties by the same name, but two different groups can each have
a property by the same name.

The API for the SPM in .NET consists of three classes and two enumerations
(described later). These classes are defined in the System.EnterpriseServices
namespace.

� SharedPropertyGroupManager class

� SharedPropertyGroup class

� SharedPropertyClass

Figure B-2 illustrates the hierarchy of these classes and their relationships to one
another.

Figure B-2: Hierarchy of the SPM API

SharedPropertyGroupManager Class
Groups are created and accessed by using a class called
SharedPropertyGroupManager. When it comes to shared properties, this is the
only class you instantiate directly. The constructor for this class takes no param-
eters. If you instantiate an instance of this class, it probably looks something like
the code in Listing B-2.

SharedPropertyGroupManager

SharedPropertyGroup

SharedProperty

Appendix B: The COM+ Shared Property Manager 219

4835-2 AppB.F 8/31/01 8:11 AM Page 219

Listing B-2: Instantiating the SharedPropertyGroupManager class

using System.EnterpriseServices;
public class SomeComponent : ServicedComponent
{
public void DoSomething()
{
SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

// do something with the Group Manager ...
}

}

Chances are that most of the time you use this class to create a property group.
To do this, you use the CreatePropertyGroupMethod. This method creates a prop-
erty group that can be used to create properties. This method’s signature looks like
the following:

SharedPropertyGroup CreatePropertyGroup (
string name,
ref PropertyLockMode dwIsoMode,
ref PropertyReleaseMode dwRelMode,
out bool fExists

);

The first parameter to this method is a string representing the name of the group.
If two components must share the properties in this group, they must use the name
of the group passed in this parameter.

The second parameter is the PropertyLockMode. PropertyLockMode is an enu-
meration in the System.EnterpriseServices namespace. This parameter deter-
mines how properties are locked in memory when they are accessed. The only two
options are PropertyLockMode.Method and PropertyLockMode.SetGet. When
you choose PropertyLockMode.Method mode, all properties in this group are
locked until the method (of the component) manipulating them returns. The SetGet
method, on the other hand, causes only an individual property to be locked when
the property is set or read. Locking properties at the method level is useful if you
need to perform consistent reads or writes across a number of properties within the
group. While you are reading or writing to one property in a group, another thread
cannot change another of the group’s properties. This comes at the cost of higher
overhead. If the read and write operations of your properties are not interdepen-
dent, you should choose the SetGet lock mode.

The PropertyReleaseMode is another enumeration from System.
EnterpriseServices. The release mode determines when the properties for this
group are released from memory. When you set the release mode to
PropertyReleaseMode.Process, the memory this group occupies is freed only when

220 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 220

the hosting process terminates. Setting the release mode to PropertyReleaseMode.
Standard frees the memory when the last client releases a reference to the group. You
may have noticed that both the PropertyLockMode parameter and this parameter are
declared by using the C# ref keyword. The reason for this becomes clear in a moment.

The final parameter in this method is a boolean flag telling the caller whether or
not the group exists. Because this parameter is marked with the out keyword, it
does not need to be set before the method is called. I should make clear that this
method is used not only to create a property group but also to get a reference to
one that exists. This is the reason for the fExists parameter. It is also the reason
that the property lock mode and property release mode parameters are passed by
reference (C# ref keyword). If a group with the same name exists, the fExists
parameter is set to true. The property lock mode and property release mode param-
eters are set to the values used when the group is created. If the group exists, any
values passed in to these parameters are ignored. Generally speaking, if you are not
sure that the group you want to use exists, you should use this method.

Using this method can be a little tricky if you are not familiar with enumera-
tions. The key to working with enumerations is to think of them as just another
data type. If I extend the preceding SomeComponent class to make a call to
CreatePropertyGroup, it looks like the code in Listing B-3.

Listing B-3: Creating a property group

using System.EnterpriseServices;
public class SomeComponent : ServicedComponent
{
public void DoSomething()
{
bool bGroupExists;
// declare the property lock mode
PropertyLockMode lm = PropertyLockMode.SetGet;

// declare the property release mode enum
PropertyReleaseMode rm = PropertyReleaseMode.Process;

SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

SharedPropertyGroup pg;
pg = gm.CreatePropertyGroup(

“myGroup”,
ref lm,
ref rm,
out bGroupExists;

);
// use pg to create properties ...

}
}

Appendix B: The COM+ Shared Property Manager 221

4835-2 AppB.F 8/31/01 8:11 AM Page 221

In Listing B-3, I define the property lock mode as SetGet and the release mode
as process. When this call returns, bGroupExists is false, as the group does not
already exist. The return value for this group is an instance of a
SharedPropertyGroup.

If you know that the group you are trying to access exists, you can use the
SharedPropertyGroupManager.Group method. This method’s signature is the
following:

Public SharedPropertyGroup Group (string name);

As you can see, this is much less involved than the CreatePropertyGroup
method. This method takes the name of the group as its sole parameter and returns
the group in the form of a SharedPropertyGroup class. Listing B-3 can be modi-
fied to use this method; see Listing B-4.

Listing B-4: Using the Group method

using System.EnterpriseServices;
public class SomeComponent : ServicedComponent
{
public void DoSomething()
{
SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

SharedPropertyGroup pg;
pg = gm.Group(“myGroup”);

// use pg to create properties ...
}

}

Instead of passing in the property lock and release modes and trying to figure
out if the property exists, I pass in the name of the group to which I want access.
This method can simplify your code and make it more readable if you know that the
property group exists.

SharedPropertyGroup Class
In Listings B-3 and B-4, you see how the methods of the
SharedPropertyGroupManager class create and grant access to property groups.
These groups are returned as instances of the SharedPropertyGroup class. Unlike
the SharedPropertyGroupManager class, you do not directly create instances of
the SharedPropertyGroup class.

The purpose of the SharedPropertyGroup class is to create properties. It imple-
ments a number of methods that can be used to create properties by name or by posi-
tion relative to other properties in the group. Start with the most common method:

222 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 222

public SharedProperty CreateProperty (
string name,
out bool fExists

);

The format of this method should look somewhat familiar. It takes a string rep-
resenting the name of the property as input and returns a bool as an output param-
eter. Just as with the CreatePropertyGroup method, this boolean flag indicates
whether or not the property has existed. Because this is an out parameter, any
value of fExists set before the method call is ignored. The return value of this
method is a SharedProperty class. As you see in the next section, the
SharedProperty class represents a single property from a shared property group.

In Listing B-5, I have extended the SomeComponent.DoSomething method to
include the creation of a SharedProperty by using the SharedPropertyGroup.
CreateProperty method.

Listing B-5: Creating a SharedProperty

using System.EnterpriseServices;
public class SomeComponent : ServicedComponent
{
public void DoSomething()
{
bool bGroupExists;
bool bPropertyExists;

// declare the property lock mode
PropertyLockMode lm = PropertyLockMode.SetGet;

// declare the property release mode enum
PropertyReleaseMode rm = PropertyReleaseMode.Process;

SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

SharedPropertyGroup pg;
pg = gm.CreatePropertyGroup(

“myGroup”,
ref lm,
ref rm,
out bGroupExists;

);
SharedProperty sp = pg.CreateProperty(

“myProp”,
bPropertyExists);

}
}

Appendix B: The COM+ Shared Property Manager 223

4835-2 AppB.F 8/31/01 8:11 AM Page 223

The SharedPropertyGroup class can create groups by position. The method
used to do this is the following:

Public SharedProperty CreatePropertyByPosition(
int position,
out bool fExists

);

In this method, the position number replaces the property name. The position can
be any valid integer value, including positive and negative numbers. I should point
out that a property created with one method cannot be accessed by another method.
For example, if you create a property by using the CreateProperty method, you
cannot later access it by using the CreatePropertyByPosition number.

Each of these property-creation methods has a corresponding property-retrieval
method. If a property is created by using CreateProperty, it can be accessed later
by using only either CreateProperty again or by using the Property method. The
Property method takes a string as an input parameter and returns a
SharedProperty. The Property method is useful only if the property has already
been created.

The PropertyByPosition method can be used when properties are created with
the CreatePropertyByPosition method. Unlike the Property method, the
PropertyByPostion method takes an integer as an input parameter instead of a
string representing the property name. Assuming a property exists, the
PropertyByPosition number can be used as shown in Listing B-6.

Listing B-6: Catching exceptions from the Shared Property Manager

using System.EnterpriseServices;
public class SomeComponent : ServicedComponent
{
public void DoSomething()
{
bool bGroupExists;
bool bPropertyExists;

// declare the property lock mode
PropertyLockMode lm = PropertyLockMode.SetGet;

// declare the property release mode enum
PropertyReleaseMode rm = PropertyReleaseMode.Process;

SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

SharedPropertyGroup pg;
pg = gm.CreatePropertyGroup(

“myGroup”,

224 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 224

ref lm,
ref rm,
out bGroupExists;

);
SharedProperty sp = pg.CreatePropertyByPosition(

5,
bPropertyExists);

}

public string DoSomethingElse()
{
SharedPropertyGroupManager gm = new
SharedPropertyGroupManager();

SharedPropertyGroup pg = null;
SharedProperty sp;

try {
pg = gm.Group(“myGroup”);

}
catch (ArgumentException ae) {
Console.WriteLine(ae.Message);

}

try {
sp = pg.PropertyByPosition(5);

}
catch (ArgumentException ae) {
Console.WriteLine(ae.Message);

}
catch (NullReferenceException nre) {
Console.WriteLine(nre.Message);

}

return “”;
}
}

In Listing B-6, I have added a method to the component: DoSomethingElse. In
this method, I assume that the property group and the property have been created.
I do not, however, completely trust that the group and property have been created.
If a client calls the DoSomething method before calling the DoSomethingElse
method, DoSomethingElse should not trap any errors. Of course, another compo-
nent within the process can create the group and property also. In case this does
not happen, I have added some error handling around my method calls. In the first
try-catch block, I attempt to catch a System.ArgumentException. If an invalid

Appendix B: The COM+ Shared Property Manager 225

4835-2 AppB.F 8/31/01 8:11 AM Page 225

group name is passed in to the SharedPropertyGroupManager.Group method, this
exception is raised. In the second try-catch block, I attempt to access the property
in position 5. Notice that I use a position number of 0 or 1. Properties created by
position number do not need to be created in sequence as you might think. You
may number them in any order you wish. If I try to access the property in position
5 and it does not exist, a System.ArgumentException is raised. This exception is
raised only if I obtain a reference to the group named myGroup. In my code exam-
ple, a System.NullReferenceException is raised if myGroup does not exist when
I call the Group method. In all likelihood, you want to do a little more than just
print out the error to the screen, but this serves instructional purposes.

SharedProperty Class
The work I have done so far in this appendix has led us to access to the shared
property itself. The shared property is accessed through a class called (surprise)
SharedProperty. Shared properties are stored in the form of an object instance.
object is a C# keyword that represents the System.Object class. This makes the
shared property rather versatile in terms of what types it can hold, as you learn in
a moment.

To access the System.Object instance in the SharedProperty class, use the
Value property. The Value property can be read from or written to. The Shared
Property Manager locks both read access and write access to this property. The code
in Listing B-7 shows how to use the SharedProperty class to read a string value
from the property. Once again, I have extended the DoSomething method from the
earlier component.

Listing B-7: Using the SharedProperty class

using System.EnterpriseServices;
public class SomeComponent : ServicedComponent
{
public void DoSomething()
{
bool bGroupExists;
bool bPropertyExists;

// declare the property lock mode
PropertyLockMode lm = PropertyLockMode.SetGet;

// declare the property release mode enum
PropertyReleaseMode rm = PropertyReleaseMode.Process;

SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

SharedPropertyGroup pg;
pg = gm.CreatePropertyGroup(

226 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 226

“myGroup”,
ref lm,
ref rm,
out bGroupExists;

);
SharedProperty sp = pg.CreateProperty(

“myProp”,
bPropertyExists);

if (bPropertyExists)
{
Console.WriteLine((string)sp.Value);

}
else {
sp.Value = “some interesting string”;

}
}

}

Once I get access to the SharedProperty, I am free to assign values to it or read
values from it. In my example, if the property exists, I write its value to the console.
If the DoSomething method has created the property, I assign a string to the value.
An interesting thing happens here. Notice that if the property exists, I must convert
the object type to a string type. This is known as boxing. To refresh your mem-
ory, here is a brief review of boxing.

Boxing converts a value type such as an integer or string to a reference type such
as an object. Unboxing is the opposite of boxing; unboxing converts a reference
type such as an object to a value type. In Listing B-7, if the property exists, I unbox
the value to a string and print the string to the console. If the property does not
exist, I simply give it a string value. Although it may not be obvious by looking at
the code, the string, some interesting string, is boxed into the Value property. This
is called an implicit boxing conversion. The C# compiler is smart enough to know
that I want the string converted into an object type. If I really want to be clear to
other readers of my code, I can do something similar to the code that follows.

else {
sp.Value = (object)”some interesting string”;

}

Here I explicitly convert the string to an object type. Although this is not tech-
nically necessary to convert the string to an object, it can help less experienced
developers understand what is going on.

Reference types such as classes can also be stored as shared properties. When a
reference type is read from or written to, either an explicit or implicit reference
conversion occurs. In an explicit reference conversion, the desired reference type

Appendix B: The COM+ Shared Property Manager 227

4835-2 AppB.F 8/31/01 8:11 AM Page 227

must be coded into the application. An implicit reference conversion, on the other
hand, does not require the declaration of a desired type. Usually, this is because the
C# compiler can determine the type you are trying to reference. To clear this con-
cept up, I have modified the DoSomething method. This method adds an instance of
a class called CName as a shared property.

Listing B-8: Storing a class instance in the Shared Property Manager

using System.EnterpriseServices;
public class SomeComponent : ServicedComponent
{
public void DoSomething()
{
bool bGroupExists;
bool bPropertyExists;

// declare the property lock mode
PropertyLockMode lm = PropertyLockMode.SetGet;

// declare the property release mode enum
PropertyReleaseMode rm = PropertyReleaseMode.Process;

SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

SharedPropertyGroup pg;
pg = gm.CreatePropertyGroup(

“myGroup”,
ref lm,
ref rm,
out bGroupExists;

);
SharedProperty sp = pg.CreateProperty(

“myProp”,
bPropertyExists);

// create a new instance of CName and add it as a property
CName name = new CName(“David”, “Roth”, “Lee”);

// this is an implicit reference conversion
sp.Value = name;

// this is an explicit reference conversion
name = (CName) sp.Value

}

228 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 228

// this is the class we will instantiate and add to the SPM
public class CName
{
public string FirstName;
public string LastName;
public string MiddleName;
public CName(string sFirst, string sLast, string sMiddle)
{
FirstName = sFirst;
LastName = sLast;
MiddleName = sMiddle;

}

Once I create an instance of the CName class, I assign it to the Value property of
the SharedProperty. When this assignment is made, the C# compiler performs an
implicit reference conversion from a CName reference type to an object reference
type. In the next line of code, I convert the object type (sp.Value) to a CName type.
This is an explicit reference conversion.

Solving the Static Problem
Now that I have covered the Shared Property Manager API, we can solve the
shared-memory problem from earlier in the appendix. At the end of the first sec-
tion, I come to the conclusion that if I can lock the iCount static field so that
another thread cannot modify it before the first thread is finished, I do not get a
DivideByZeroException. To solve this problem, I put the iCount variable in a
protected shared property by using the Shared Property Manager API. The code for
this example is shown in Listing B-9.

Listing B-9: Fixing shared memory problems

using System;
using System.Reflection;
using System.EnterpriseServices;
using System.Threading;

[assembly: AssemblyKeyFile(“C:\\crypto\\key.snk”)]

namespace SharedProperties
{

public class SC : ServicedComponent
{

Continued

Appendix B: The COM+ Shared Property Manager 229

4835-2 AppB.F 8/31/01 8:11 AM Page 229

Listing B-9 (Continued)

public void Start1()
{
PropertyReleaseMode rm = PropertyReleaseMode.Process;
PropertyLockMode lm = PropertyLockMode.Method;
bool bPropertyExists;
bool bGroupExists;

SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

SharedPropertyGroup pg = gm.CreatePropertyGroup(
“CounterGroup”,
ref lm,
ref rm,
out bGroupExists);

SharedProperty prop = pg.CreateProperty(
“Counter”,
out bPropertyExists);

prop.Value = 2;
int iSomeValue = 4;

Thread.Sleep(500);

int iResult = iSomeValue / (int) prop.Value;
}

public void Start2()
{
PropertyReleaseMode rm = PropertyReleaseMode.Process;
PropertyLockMode lm = PropertyLockMode.Method;
bool bPropertyExists;
bool bGroupExists;

SharedPropertyGroupManager gm =
new SharedPropertyGroupManager();

SharedPropertyGroup pg = gm.CreatePropertyGroup(
“CounterGroup”,
ref lm,
ref rm,
out bGroupExists);

SharedProperty prop = pg.CreateProperty(
“Counter”,
out bPropertyExists);

230 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 230

prop.Value = 0;
}

}
public class CApp
{
public static void Main()
{
Thread t1 = new Thread(new ThreadStart(Start1));
Thread t2 = new Thread(new ThreadStart(Start2));

t1.Start();
t2.Start();

t1.Join();
t2.Join();

Console.WriteLine(“Done”);
}

public static void Start1()
{
SC sc = new SC();
sc.Start1();

}

public static void Start2()
{
SC sc = new SC();
sc.Start2();

}
}

}

The Main method should look very familiar. Once again, I create two threads,
start them, and wait for each to finish. This time, instead of doing the math inside
the thread methods, I let the component do all the work. Each thread creates an
instance of the SC component. The first thread calls SC.Start1. SC.Start1 con-
tains the same code as the previous example, except for the fact that I get the count
from a shared property called Counter instead of from a static variable. Because I
want the Counter property to be locked during the entire duration of the
SC.Start1 method call, I set the PropertyLockMode to Method. If I set it to
SetGet, it is locked only while either thread is reading from or writing to it. This
means that the second thread is still able to change the property if I set the
PropertyReleaseMode to SetGet.

Appendix B: The COM+ Shared Property Manager 231

4835-2 AppB.F 8/31/01 8:11 AM Page 231

The second thread calls the SC.Start2() method. In SC.Start2, it is tempting
to avoid creating the group and property all over again. It is quicker to code if
I just assume that the group and property are created and if I use the
SharedPropertyGroupManager.Group and SharedPropertyGroup.Property
methods to get the group and Counter property. The problem with this approach
comes from the fact that, as a developer, I do not know when the operating system
is going to schedule a thread. The first thread, for example, can be switched out
after it creates the group and before it creates the property. This is bad if the second
thread is scheduled and tries to access a property that is not there.

When this application is run, thread one and thread two start and call their
respective methods on the SC class. Just as before, thread one goes to sleep, which
gives thread two a chance to change the Counter property. Because SC.Start1 has
not finished yet, the Shared Property Manager still locks the Counter property. As
a result, the second thread cannot change the counter to zero. The second thread
blocks while it is waiting for the Counter property lock to be released. When the
second thread blocks, the first thread is scheduled again. This provides a chance for
the SC.Start1 method to finish and release the lock on the Counter property.
When COM+ releases the lock, the second thread can change the property value to
zero and exit. When this code is run, I no longer get a DivideByZeroException.
My problem has been solved!

Now you can see some of the problems that shared memory can cause for multi-
threaded applications. The Shared Property Manager provides you with a conve-
nient way to protect your components’ shared memory. Armed with the lessons
learned from this appendix, you can now write more robust applications.

232 Appendixes

4835-2 AppB.F 8/31/01 8:11 AM Page 232

Appendix C

Introduction to C#
C# IS THE MOST RECENT addition to the Visual Studio family. The syntax of this lan-
guage shares many similarities with C++ and even Java. C# is an excellent choice
for .NET programming in general and for COM+ programming specifically, as C# is
designed to work seamlessly with the .NET Framework. In addition, C# provides the
object-oriented language features that lend themselves so well to component-based
programming.

If you are just learning about .NET and are not quite familiar with C#, this
appendix is an excellent place to start. You learn the features of the C# language in
this appendix. Also, you learn some of the common tasks a developer performs in
any programming language.

Namespaces
Every component written in this book is contained within a namespace.
Namespaces are not strictly necessary for doing COM+ component development,
but they do provide a number of benefits. First, a namespace provides a way to
organize code. Types of a similar nature or function can be grouped in a single
namespace. Other developers who may need to use your classes find them easier to
understand if they are grouped in one or more namespaces. Second, namespaces
provide a means to resolve naming conflicts among types in your code. To under-
stand this second point, take a look at the following code example.

Namespace NsOne
{
class CFoo
{
}

}
Namespace NsTwo
{
class CFoo
{
}

}

233

4835-2 AppC.F 8/31/01 8:11 AM Page 233

The preceding code contains two classes, both named CFoo. Usually, two classes
of the same name cannot exist within the same assembly. A namespace allows you
to define two CFoo classes within the same assembly. When you reference the first
CFoo class, you must also use the namespace name. For instance, to create a new
instance of the first CFoo class, write something like NsOne.CFoo = new NsOne.
CFoo(). Usually, when you write .NET applications, you do not have to use the
name of the namespace when referencing types. Because you have a naming con-
flict in the preceding example, however, you must use the namespace name to ref-
erence the first instance of CFoo.

Notice that dot notation is used here to reference CFoo. In C#, almost everything
is referenced using a period. Namespaces are no different. In fact, namespace names
can also contain a period. You see this quite frequently in the .NET Framework. For
instance, the NsOne namespace in the code example above can be changed to
MyApplication.NsOne and can still be a legal namespace.

Namespaces can also contain other namespaces. For instance, you can put the
two preceding namespaces in a singe namespace called MyApplication.

Namespace MyApplication
{
Namespace NsOne
{
class CFoo
{
}

}
Namespace NsTwo
{
class CFoo
{
}

}
}

A client can still access the NsOne.CFoo class by adding the MyApplication
namespace as MyApplication.NsOne.CFoo.

Somehow, you have to be able to tell the C# compiler what namespaces you are
going to use in your application. The C# keyword using serves this purpose. This
keyword lets the C# compiler know where to look to resolve types when you refer-
ence them in your code. A client who wishes to use one of the CFoo preceding classes
may have a using statement at the top of his or her code, as follows. For those of you
who have developed applications in C or C++, the using keyword is similar to the
#include compiler directive that includes header files in your C or C++ application.

Using MyApplication.NsOne;

234 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 234

Some namespace names in the .NET Framework can be rather long. If you get
into the habit of using the namespace name to reference types, this can become
rather tedious for long namespace names. Fortunately, C# allows you to alias a
namespace name. An alias is a short name for a namespace. Once it is defined, an
alias can be used to reference types just as a full namespace name can. If you
decide that the MyApplication.NsOne namespace is too long to write out each
time you need one of its types, you can do something like this:

Using NS1 = MyApplication.NsOne;

Now, whenever the client needs to reference a type in the namespace, it simply
uses the NS1 namespace:

Using NS1 = MyApplication.NsOne;
NS1.CFoo = NS1.CFoo();

Flow-Control Statements
C# has a number of statements you can use in code to control the flow of your
application’s execution. In this section, you learn some basic statements such as
if-else statements and switches. In addition, you learn the jump statements that
allow you to jump to different places in your code. You may notice a strong resem-
blance in these statements to Java and C++. This resemblance is part of the reason
why C# is often compared to those two languages.

if-else Statements
I once heard a programmer say that he could program in any language that had an
if statement. If you have coded in more than one language, or if you have even
seen code from different languages, you probably have noticed that most if-else
statements are quite similar. C# is not much different in this respect. In C#, the con-
dition to be tested is in parentheses. The action carried out if the condition is true is
in braces. The followed code illustrates a simple if statement in C#.

If (iVar == 10)
{
// do something here

}

As with most languages, C# supports an else statement. If the condition in the
if statement evaluates to false, the code in the else statement is executed.

Appendix C: Introduction to C# 235

4835-2 AppC.F 8/31/01 8:11 AM Page 235

If (iVar == 10)
{
// do something here

}
else
{
// do something else

}

It may be necessary to specify an additional condition in case the first condition
evaluates to false. C# supports the else if statement for this purpose.

If (iVar == 10)
{
// do something here

}
else if (iVar == 20)
{
// do something else

}
else
{
// iVar does not equal 10 or 20

}

if statements can also be nested, as in the following example.

If (iVar == 10)
{
if (name == “fred”)
{
// do something here

}
}

switch Statements
switch statements allow you to evaluate an expression against multiple constants.
A switch statement provides a clean alternative to multiple if-else statements. A
typical switch statement looks like the following.

switch(iVar)
{
case 1:
Console.WriteLine(“one”);

236 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 236

break;
case 2:
Console.WriteLine(“two”);
break;

case 10:
Console.WriteLine(“ten”);
break;

}

The statement that precedes tests the iVar variable against the possible values of
1, 2, and 10. In this statement, iVar is the expression. Each case statement con-
tains a constant that is tested against the expression. Notice that at the end of each
case statement, you must add a break statement. case statements in C# must end
with some kind of jump statement such as break or goto. Most of the time, the
break statement is used. C# does not support fall-through case statements like C++
does. Instead, once C# finds a case statement that matches the expression, it exe-
cutes the case statement and exits the switch statement.

Strings and integral types are the only data types supported in a case statement.
Integral types can be any of the following types from the System namespace.

� Int16

� Int32

� Int64

When the preceding statement is executed, the value of iVar is compared to
each of the constants in the case statements. If one of the constants equals iVar,
that case statement is executed. Once the case statement has executed, control
passes outside of the switch statement. If none of the parameters matches, a
default statement can be executed.

switch(iVar)
{
case 1:
Console.WriteLine(“one”);
break;

case 2:
Console.WriteLine(“two”);
break;

case 10:
Console.WriteLine(“ten”);
break;

case default:
Console.WriteLine(“Could not find a match!”);
Break;

}

Appendix C: Introduction to C# 237

4835-2 AppC.F 8/31/01 8:11 AM Page 237

In this example, if iVar does not equal any of the values in the case statements,
the default statement is executed.

Jump Statements
Jump statements allow you to move to various places in your code. You have
already seen one of C#’s jump statements: break. break can be used in loops or
switch statements.

for (int j = 0; j < 10; j++)
{
if (j == 7)
break;

EvtLog.WriteEntry(j.ToString());
}
Console.WriteLine(“finished”);

When j equals 7, the loop exits and the Console.WriteLine executes. In this
case, j is never incremented past 7.

The continue statement can also be used within loops. continue works simi-
larly to break, except that a loop does not exit if it encounters a continue state-
ment. Modify the for loop to use a continue statement instead.

for (int j = 0; j < 10; j++)
{
if (j == 7)
continue;

EvtLog.WriteEntry(j.ToString());
}

Here, when j equals 7, control is passed back to the top of the loop. The
EvtLog.WriteEntry method does not execute during this time. When j is incre-
mented past 7, the EvtLog.WriteEntry method continues to execute.

The goto statement has received a lot of negative attention over the years. Like
many things, if it is overused, it can lead to sloppy code. Typically, goto is used to
jump to a label inside your code, as in the following example.

if (SomeValue == true)
{
goto MyLabel;

}
// some other program code
MyLabel:
// this code will execute

238 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 238

goto can also be used to jump to case statements inside a switch statement, as
follows.

switch(iVar)

{
case 1:
Console.WriteLine(“one”);
break;

case 2:
Console.WriteLine(“two”);
break;

case 3:
goto case 2;

case 10:
Console.WriteLine(“ten”);
break;

case default:
Console.WriteLine(“Could not find a match!”);
break;

}

If iVar evaluates to 3, the goto statement passes control to the second case
statement. Even though the second case statement does not evaluate to true, it still
executes, as you have passed control to it by using the goto statement.

The return statement is used inside method calls to return control to the caller.
For methods that return values, the return statement is used to return those values.
Void methods do not necessarily have to use the return statement.

int GetId()
{
int i;
return i;

}

Exception Handling
Many classes in the .NET Framework throw exceptions at one time or another. C#
supports an exception-handling mechanism for these situations. Exception han-
dling in C# is executed by using try-catch blocks. The basic idea is to put code
that may cause an exception inside of a try block. The catch statement catches
errors that using code inside the catch block may throw.

Appendix C: Introduction to C# 239

4835-2 AppC.F 8/31/01 8:11 AM Page 239

try
{
DatabaseObject.Open();

}
catch (DBException dbe)
{
// log the error or report something to the user

}

If the preceding database connection cannot be opened, it may throw an excep-
tion. The catch statement allows you to catch the error before it reaches the user.
In some cases, your code may throw more than one kind of error. For example,
when the preceding database is opened, it may not throw an exception of type
DBException; rather, it may throw a regular Exception. To catch each possible
exception, multiple exception statements can be combined.

try
{
DatabaseObject.Open();

}
catch (DBException dbe)
{
// log the error or report something to the user

}
catch (Exception e)
{
// log the error or report something to the user

}

The finally statement can be used at the end of a try-catch block. Code inside
a finally block is executed regardless of the exception thrown. Even if no excep-
tion is thrown, code in the finally block is executed.

try

{
DatabaseObject.Open();

}
catch (DBException dbe)
{
// log the error or report something to the user

}

240 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 240

catch (Exception e)
{
// log the error or report something to the user

}
finally
{
Console.WriteLine(“executing finally statement”);

}

Writing Loops in C#
C# supports several loop mechanisms, such as those seen in C++ and Visual Basic.
The for loop is used to demonstrate the break statement. The for loop takes three
expressions: the initializer, the expression to be evaluated, and the interator. The
initializer initializes the loop variable and, optionally, declares it. When the expres-
sion in the loop evaluates to false, the loop exits. The iterator increments the loop
counter. Usually in a for loop, a loop counter is used during the evaluation of the
expression.

for (int i = 0; i < 10; i++)
{
// do something interesting

}

In this for loop, the integer i is declared and initialized to zero. With each iter-
ation of the loop, i is incremented by a value of 1. Once i is incremented to 10, the
expression evaluates to false, and the loop exits.

A for loop can also be used to count backward.

for (int i = 10; i > 0; i--)
{
// do something interesting

}

In the preceding loop, i is initialized to 10. Each iteration of the loop decrements
i by one. Once i reaches 0, the loop exists.

A do loop and a while loop are similar. Both statements execute a block of code
until a condition evaluates to false. The expression in a do loop is set at the bottom
of the loop. Unlike a while loop, a do loop executes at least once regardless of how
the expression evaluates.

Appendix C: Introduction to C# 241

4835-2 AppC.F 8/31/01 8:11 AM Page 241

do
{
i++;

}
while (i < 10);

Even if i is initialized to 10, this loop executes one time. The condition in a
while loop, on the other hand, is evaluated before the loop is executed. A while
loop also places its condition at the top of the loop.

while (i < 10);
{
i++;

}

Foreach loops can be used with collection classes or arrays. These loops iterate
through each item in a collection or array until they reach the end of the items.

ClerkMonitor cm = new ClerkMonitor();
foreach (ClerkInfo ci in cm)
{
Console.WriteLine(ci.Description);

}

In this loop, ClerkMonitor is a collection class that contains items of type
ClerkInfo. Each iteration of the loop populates the variable ci with an instance of
ClerkInfo. In this type of loop, the element type (in your case, ClerkInfo) must be
declared inside the loop expression.

Method Parameters
Method parameters can be decorated with special statements that affect the behav-
ior of parameters. These statements are used in a couple of places in this book, so
you may want to pay particular attention to this section.

The ref statement allows you to pass in a parameter by reference. When the
method executes, it sees the value the parameter has been set to in the code before
the method has been called. If the method changes the value of the parameter, the
new value is visible when the method returns.

In the code listed below, notice that the ChangeValue method decorates the j
parameter with the ref keyword.

public class SomeClass
{

242 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 242

public void ChangeValue(ref j);
}

The code listed below demonstrates the use of the ChangeValue method. Since j
is a ref parameter, I must create my own integer instance in order to pass j to
ChangeValue. If the j parameter was not a ref parameter, I could simply call
sc.ChangeValue(1). After all, passing the value of 1 to ChangeValue would make
the code more readable. I cannot do that with a ref parameter, however. If I were
to pass a constant value such as the number 1 to ChangeValue, then the
ChangeValue method would not be able to change the value of the constant
(remember that constants cannot be changed once they are assigned a value). The
C# compiler would not even compile the example below if I were to pass
ChangeValue the constant 1.

int j = 1;
SomeClass sc = new SomeClass();
sc.ChangeValue(ref j);
Console.WriteLine(j.ToString());

If the ChangeValue method changes the value of j to 2, 2 is displayed when the
method returns. Because j is set to 1 before the method is called, ChangeValue sees
j as equal to 1 when the method is called. Methods that define ref parameters can
be a little tricky to deal with. You must remember to use the ref statement both
when you define the method and when you call the method. Ref parameters must
also be initialized before they are passed to a method.

The out parameter works similarly to the ref parameter, but, with the out param-
eter, types passed in as parameters do not need to be initialized before they are
passed. A method assigns the parameter a value before it returns control to the
caller. out parameters work well in situations where the method must return mul-
tiple values.

ResourcePool rp;
SomeClass sc = new SomeClass();
sc.GetCount(out rp);
Console.WriteLine(rp.ToString());

In the preceding example, the rp variable isn’t initialized. To call the method,
declare the rp variable, and pass it in to the method call. Just as with the ref state-
ment, the out statement must be used when calling a method.

Arrays
Dealing with arrays in C# can be a bit awkward, especially if you are coming
from a C++ or Visual Basic background. In C#, arrays can be single dimensional,

Appendix C: Introduction to C# 243

4835-2 AppC.F 8/31/01 8:11 AM Page 243

multidimensional, or jagged. Arrays can also be of any reference or value type
(System.Object, int, double, bool, and strings, to name a few). All arrays,
regardless of their types, inherit from System.Array. The Array class contains a
number of methods and properties that help you work with arrays. This class allows
you to perform binary searches, copy arrays, and sort arrays.

Look at how an integer array is declared.

int[] iAry = new int[10];

In C#, arrays are declared by using square brackets (as opposed to parentheses in
Visual Basic). Instead of brackets’ going behind the variable name, as in many lan-
guages, they go after the data type. The array is created by using the new keyword.
Once the array is created, it is not possible to modify its dimensions. The dimensions
of an array must be declared by using a literal value, such as 10 in the preceding
example, or a constant variable. The C# compiler does not allow arrays to be declared
with variable expressions. In other words, the following code example is illegal in C#.

int i = 10;
int[] iAry = new int[i]; // illegal!

Array elements are accessed by using square brackets. C# array elements start at
position 0. This is akin to the C++ way of handling arrays. The following code uses
square brackets to access the element in the first position of the array.

iAry[0] = 100;

Arrays can also be initialized when they are created.

int[] iAry = new int[10] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

To initialize an array, the initial values must be enclosed inside braces.
As I state previously, arrays can be multidimensional. Multidimensional arrays

contain elements in two or more dimensions. A two-dimensional array can be
declared as follows.

int[,] iAry = new int[3,2];

When I work with arrays with two or more dimensions, I like to think of them in
terms of a table or matrix. The preceding two-dimensional array is laid out in mem-
ory very much like Figure C-1.

244 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 244

Figure C-1: Two-dimensional array

A comma is used to denote that there are two dimensions to this array. The array
is 3-elements long and 2-elements wide. Adding commas and specifying the
lengths of their elements can extend array dimensions. The following code creates
an array that is 4-elements long, 3-elements wide, and 2-elements deep.

int[, ,] iAry = new int[4,3,2];

Multidimensional arrays can be initialized when they are declared. The two-
dimensional array that precedes can be initialized as follows.

int[,] iAry = new int[3,2] {{12,3}, {4,23}, {99,0}};

If you continue with the table concept, the array, when it is initialized, looks
something like Figure C-2.

3 Elements Long

2 Elements Wide

N

N

N N

N

N

Appendix C: Introduction to C# 245

4835-2 AppC.F 8/31/01 8:11 AM Page 245

Figure C-2: Initializing a two-dimensional array

Basic Data Types
I refer to basic data types as integers, characters, strings, doubles and floats, and so
on. C# has keywords that act as aliases for these kinds of types. Keywords in C#
refer to structures from the System namespace. For instance, int is the keyword
that refers to a System.Int32 structure. Table C-1 lists the data type keywords in
C# and their associated structures from the System namespace.

TABLE C-1 BASIC DATA TYPES IN C#

C# Keyword System structure Size (bits) Value Range

Sbyte System.SByte 8 -128 to 127

Byte System.Byte 8 0 to 255

Short System.Int16 16 -32768 to 32767

Ushort System.UInt16 16 0 to 65535

iAry [2,0]

iAry [1,1]

iAry[3,2] = {{12,3}, {4,23}, {99,0}}

12

4

99 0

23

3

246 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 246

C# Keyword System structure Size (bits) Value Range

Int System.Int32 32 -2147483648 to 2147483647

Uint System.UInt32 32 0 to 4294967295

Long System.Int64 64 -9223372036854775808 to
9223372036854775807

Ulong System.UInt64 64 0 to 18446744073709551615

Char System.Char 16 0 to 65535

Float System.Single 7 digits 1.5 × 10-45 to 3.4 × 1038

double System.Double 15-16 digits 5.0 × 10-324 to 1.7 × 10308

bool System.Boolean 8 true or false

decimal System.Decimal 128 1.0 × 10-28 to approximately
7.9 × 1028

Enumerations are a special kind of data type. Enumerations contain a list of named
constants. They can make code more readable, as they allow you to reference con-
stants by using a name instead of the literal value. In C#, enumerations are declared by
using the enum keyword. Enumerations can be declared as byte, sbyte, short,
ushort, int, uint, long, and ulong. By default, enumerations are defined as int.

enum Animal
{
Dog,
Cat,
Fish,
Bird

}

A comma must separate each member in the enumeration. If values for the enu-
meration members are not explicitly defined, the first member defaults to 0. In the
Animal example, the Dog member equates to 0; the Cat equates to 1, and so on.
Members can be initialized to constant values if needed.

enum Animal
{
Dog = 3,
Cat,
Fish ,
Bird

}

Appendix C: Introduction to C# 247

4835-2 AppC.F 8/31/01 8:11 AM Page 247

Here, members are initialized starting at 3. Cat equals 4 and so on. In reality,
each member can be initialized to any constant expression.

The two preceding examples do not define an underlying type for the enumera-
tion. Animal, in this case, defaults to an integer enumeration. Animal can be
defined as a long, as in the following example.

enum Animal : long
{
Dog = 3,
Cat,
Fish ,
Bird

}

Structures
A structure — also called a struct — is a data type that can contain other data types
(int, char, double, and so on), constructors, methods, and fields. Structs are value
types, which means a couple of things to a developer. First, memory for a value
type is allocated from a thread’s stack. Allocating memory from the thread’s stack
can provide a performance increase over allocating memory from an application’s
heap. Second, when dealing with structs, you are dealing directly with the struct
itself, as opposed to a reference to the struct. This has implications when passing
structs around in a program to different methods. When a struct is passed to a
method, a copy of the struct is passed instead of a pointer or reference to the struct.
You see in the next section that this differs from classes, as classes are passed by
reference. Structs work well in situations where multiple values represent a single
concept or entity. For instance, a struct works well if you need to represent map
coordinates in an application. A struct representing map coordinates might contain
integers representing longitude and latitude and a string representing location.

In the previous section, you see how each of the data-type keywords in C#
aliases a structure from the System namespace. As a developer, you can define your
own structs by using the struct keyword.

struct Location
{
int longitude;
int latitude;
string location;

}

The preceding is a structure called location that contains a map coordinate and
a description of the location. In an application, you can declare an instance of this
struct and set the values of the fields.

248 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 248

Location Detroit;
Detroit.longitude = 1000;
Detroit.latitude = 99;
Detroit.location = “Joe Louis Arena”;

In this example, I initialize the fields of the struct myself. There may be occa-
sions, however, when you want the struct to initialize its fields instead. To do this,
the struct must implement a constructor. Constructors are methods called when a
struct is initialized. Constructors can contain parameters that can be used to initial-
ize fields. A struct may implement multiple constructors.

If you want to initialize fields of the location struct, you can implement a con-
structor that takes the longitude, latitude, and location as parameters to the
constructor.

struct Location
{
int longitude;
int latitude;
string location;
Location(int iLongitude, int iLatidude, string sLocation)
{
longitude = iLongitude;
latitude = iLatitude;
location = sLocation;

}
}

To use this new constructor, the client code must be changed also. A client must
use the new keyword when instantiating structs with parameterized constructors.

Location Detroit = new Location(1000, 99, “Joe Louis Arena”);

Structs can also implement methods. For example, the Location struct might
need a method to move from one location to another.

struct Location
{
int longitude;
int latitude;
string location;
Location(int iLongitude, int iLatidude, string sLocation)
{
longitude = iLongitude;
latitude = iLatitude;

Appendix C: Introduction to C# 249

4835-2 AppC.F 8/31/01 8:11 AM Page 249

location = sLocation;
}
void Move(int iLongitude, int iLatitude, string sLocation)
{
longitude = iLongitude;
latitude = iLatitude;
location = sLocation;

}
}

When you are working with structs, you must remember these rules:

� Structs cannot declare parameterless constructors.

� Instance fields cannot be initialized in structs.

� Structs cannot support inheritance.

The C# compiler generates a parameterless constructor (also known as a default
constructor) on your behalf. The default constructor is used to initialize the struct’s
fields to their default values. For integer types, this means they are initialized to 0;
strings are initialized to an empty string (""). The compiler barks out an error if you
try to implement your own default constructor.

Under most circumstances in C#, you can initialize a field to some value. This is
not legal in structs. For instance, it is illegal to initialize the longitude field when
you are declaring it in the struct.

struct Location
{
int longitude = 1000; // illegal statement for a struct!!
int latitude;
string location;

}

The final rule to remember about structs is that they do not support inheritance.
Inheritance allows you to derive functionality from another class by inheriting its
properties, methods, and so on. If you need inheritance, you must use a class. You
learn more about classes in the next section.

Classes
Classes are quite similar to structs. The main difference between classes and structs
is that classes are reference types but structs are value types. When a class is passed
to a method as a parameter, a reference to the class is passed instead of the actual
bits that make up the class. A reference, in this sense, is the location in memory

250 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 250

where the class resides. When a class is initialized, memory is allocated from the
managed heap, as opposed to the threads stack. (Chapter 1 provides more informa-
tion about .NET’s managed heap.)

Like structs, classes can contain fields, methods, and constructors. The example
that follows converts the Location struct from the previous section into a class.

class Location
{
int longitude;
int latitude;
string location;
Location(int iLongitude, int iLatidude, string sLocation)
{
longitude = iLongitude;
latitude = iLatitude;
location = sLocation;

}
void Move(int iLongitude, int iLatitude, string sLocation)
{
longitude = iLongitude;
latitude = iLatitude;
location = sLocation;

}
}

The only difference between this class and the Location struct is the use of the
class keyword. This C# keyword is used to declare a class.

As I stated previously, C# classes can support inheritance. Inheritance is com-
monly used when there is a parent-child relationship between classes. For instance,
a class called Dog might have properties related to common characteristics of a
mammal, such as fur and teeth. The Dog class might also have methods such as
Bark() and Sit(). Another class such as Labrador might be able to use the func-
tionality of the Dog class and extend upon it with methods such as retrieve().

class Dog
{
string Fur;
int Teeth;
Bark() { ... }
Sit() { ...)

}

class Labrador : Dog
{
Retrieve() { ... }

}

Appendix C: Introduction to C# 251

4835-2 AppC.F 8/31/01 8:11 AM Page 251

The Labrador class inherits the fields and methods of the Dog class by declaring
the Dog class in its own definition (: Dog). When a client creates an instance of the
Labrador class, it is able to access the Fur and Teeth properties and call the
Bark() and Sit() methods. The client is also able to call the retrieve() method
that the Labrador class implements. For example, the following client code is legal
in C#.

Labrador lab = new Labrador();
lab.Bark();

Some languages allow a class to inherit from multiple base classes. A base class
is any parent class a child class inherits. C# (or any .NET language, for that matter)
does not support multiple inheritance.

Some classes in .NET act strictly as base classes. C# provides the abstract key-
word to support this need. Abstract classes cannot be instantiated directly. The Dog
class can be converted to an abstract class quite easily by adding the abstract
keyword to the declaration of the class.

abstract class Dog
{
string Fur;
int Teeth;
Bark() { ... }
Sit() { ...)

}

Methods inside classes can also be declared abstract without making the entire
class abstract. Classes that inherit from base classes with abstract methods must
implement the abstract methods of the parent. In addition, the parent must not pro-
vide an implementation of a method it defines as abstract. As you can see in the
Bark() method in the following example, methods are declared abstract by adding
the abstract keyword to the declaration of the method.

class Dog
{
string Fur;
int Teeth;
abstract Bark() { ... }
Sit() { ...)

}

Sealed classes can be thought of as the opposite of abstract classes. Another
class cannot inherit a sealed class. If, in this example, the Dog class is marked
sealed instead of abstract, the Labrador class cannot inherit from the Dog class.

252 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 252

sealed class Dog
{
string Fur;
int Teeth;
Bark() { ... }
Sit() { ...)

}

class Labrador : Dog // this is an error!
{
Retreive() { ... }

}

A field or method of a class can declare one of several modifiers that affect the
accessibility of the member. Modifiers can be any of the following:

� public

� protected

� private

� internal

� protected internal

Public members can be accessed from any client or child class. Only child classes
can access protected members. Only the class implementing the member can access
private members. Only other types within the same project can access internal
members. Only child classes within the same project can access protected internal
members.

Some of these modifiers can be applied to the class itself. A class defined inside
a namespace can be marked either public or internal. Classes that are members
of other classes, however, can be marked with any of the access modifiers.

Properties
Properties are similar to fields in that they represent a type that is a member of a
class or. struct. Properties wrap access to a field. They allow you to validate data a
client is attempting to assign to a field. They can also be used to retrieve values
upon a client’s request. From the client’s perspective, a property looks just like any
other field. Just like fields, properties are declared with data types. The following
class implements a property called EngineSize.

Appendix C: Introduction to C# 253

4835-2 AppC.F 8/31/01 8:11 AM Page 253

class Car
{
private string m_EngineSize;
public string EngineSize
{
get
{
return m_EngineSize;

}
set
{
m_EngineSize = value;

}
}

}

The EngineSize property is implemented with get and set methods. These
methods are called accessors. The get accessor is called whenever the property
appears on the left side of an equation or whenever the client needs to read the
property value. The set accessor is used whenever the client assigns a value to the
property. The client can use the property as if it were a field of the class.

Car car = new Car();
MessageBox.Show(car.EngineSize);

Inside of the set accessor, the variable on the right-hand side of the equation is
called a value. This is a special keyword that represents the value the client is pass-
ing in. Regardless of the property’s data type, the value keyword can always be used.

Properties can be made read-only or write-only depending on which accessor is
implemented. For example, if you want to make the EngineSize property write-
only, simply omit the get accessor.

class Car
{
private string m_EngineSize;
public string EngineSize
{
set
{
m_EngineSize = value;

}
}

}

If the client tries to read the value of the property, the compiler generates an error.

254 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 254

Indexers
Indexers are a rather neat feature of C#. They allow a class to be treated as if it were
an array. The elements of the class can be iterated through as if they were elements
of a normal array. Just like arrays, indexers are accessed by using square brackets
and an index number. Indexers use accessors in the same way as properties do.

class CIndexer
{
string[] names = new string[3] (“bob”, “joe”, “ralf”);
public string this [int index]
{
get
{
return names[index];

}
set
{
names[index] = value;

}
}

This class implements an indexer that wraps an array of names. I try to keep
things simple here, but usually you want to perform some logic to determine if the
client has given you an index number that is out of range. In the declaration of the
indexer, the this keyword is used. Classes use the this keyword to reference their
own currently running instance. Next, inside the brackets, the index variable is
defined. The class uses this variable to determine which element in the index the
client wishes to access.

A client uses this indexer in the following manner. Notice how the client uses the
class as if it were an array.

// client code
CIndexer indexer = new CIndexer();
for (int i = 0; i < 2; i++)
{
Console.WriteLine(indexer[i]);

}

Unsafe Code
One of the most notable differences between C# and Visual Basic is that C# allows
the use of pointers. Pointers run in an unsafe context. When the .NET runtime sees

Appendix C: Introduction to C# 255

4835-2 AppC.F 8/31/01 8:11 AM Page 255

code that has been declared in an unsafe context, it does not verify that the code is
type-safe. Although the memory to which pointers point is allocated from managed
memory (see Chapter 1 for more information on managed memory and the Garbage
Collector), the Garbage Collector does not see the pointer on the heap. Because the
Garbage Collector does not know about pointers, special precautions must be taken
to protect an application’s pointers.

public unsafe static void Main()
{
int I = 12;
int* pI = &I;
int J = *pI;
Console.WriteLine(J.ToString());

}

The Main() method that precedes is declared by using the unsafe keyword. This
keyword tells the C# compiler that the following block of code may contain point-
ers. Applications that use the unsafe keyword must be compiled with the /unsafe
compiler option. This option can be specified when you use the command line com-
piler or the IDE.

The pI pointer is declared with using the * operator. The ampersand (&) operator
returns the memory location of the I variable. In C#, the * and the & work the same
way they do in C++. The * operator is used for pointers only. Do not confuse this
with the multiplication operator in C#, although both use the same symbol. The
* operator is used to return the value contained in the pointer’s memory address.
The & operator, on the other hand, returns the memory address of a type. In the dec-
laration of the pI pointer, the memory location of I is stored in pI.

Although the code below compiles and runs, there is a potential problem. If the
integer, I, were a field of a class, the application could run into problems if a
Garbage Collection were to run just after the assignment of the pointer.

public unsafe static void Main()
{
SomeClass sc = new SomeClass();
int* pI = &sc.I; // this could cause problems!!
int J = *pI;
Console.WriteLine(J.ToString());

}

A Garbage Collection can run after the assignment of the pointer. If this occurs,
the memory location of sc and its I field might change. This renders the pointer
invalid, as the pointer is pointing to a memory location that is null or is occupied
by another type. To avoid this problem, the fixed statement can be used to pin the
sc instance in memory. By pinning a class in memory, you can prevent the Garbage
Collector from changing the class’s location.

256 Appendixes

4835-2 AppC.F 8/31/01 8:11 AM Page 256

public unsafe static void Main()
{
SomeClass sc = new SomeClass();
int J;

fixed (int* pI = &sc.I)
{
J = *pI;

}
Console.WriteLine(J.ToString());

}

In a fixed statement, the declaration of a pointer and its assignment can be
written inside parentheses. Any code that must be run using the pointer can be put
in the code block that follows the fixed statement.

You can see from this appendix that C# is a fully featured language that con-
tains many of the features (such as support for flow-control statements, loops,
arrays, etc.) you have come to expect from a modern programming language. The
purpose of this appendix was not to teach you the entire ins and outs of C# but
rather to introduce you to the language and point out some of the language fea-
tures that are used throughout this book. Now that you have read this appendix,
perhaps the language features of C# and some of its quirks will not look so foreign
to you as you make your way through the rest of the book.

Appendix C: Introduction to C# 257

4835-2 AppC.F 8/31/01 8:11 AM Page 257

4835-2 AppC.F 8/31/01 8:11 AM Page 258

Appendix D

Compensating Resource
Managers

A COMPENSATING RESOURCE MANAGER (CRM) performs duties similar to a resource
manager that I discussed in chapter 4. Resource managers are a crucial piece of a
distributed transaction. They provide protected access to managed resources such
as message queues and databases. CRMs provide you with a means to develop a
pair of COM+ components that provide most of the services of a resource manager,
without undergoing much of the effort required to develop a full-scale resource
manager. Unlike a full-scale resource manager, a CRM does not provide isolation of
data. (Isolation is one of the ACID rules from Chapter 4) Isolation hides changes to
data from other clients while the data is being altered. CRMs provide the commit
and rollback functionality of a full-scale resource manager.

The most common use of a CRM is to provide protected access to the file system.
Applications must often access the file system to write data and to move or delete
files. CRMs also provide a good way to manage XML text documents. As XML
becomes more widely adopted, it is likely that XML documents will contain busi-
ness data that must be managed within a transaction. Because there is no resource
manager for the Windows file system, CRMs help fill this void by allowing you to
protect access to files within a COM+ transaction. CRMs also allow you to stay
within the familiar transactional-development model of COM+.

The classes you need to write a CRM in C# are in the System.
EnterpriseServices.CompensatingResourceManager namespace. In this sec-
tion, you learn to write a CRM by using classes from this namespace. Also, you
learn about the CRM architecture and requirements CRM components and applica-
tions must meet. If you have not read Chapter 4 before reading this appendix, I
highly recommend that you do so. Chapter 4 gives you the background you need to
understand the concepts and terminology in this appendix.

259

4835-2 AppD.F 8/31/01 8:11 AM Page 259

Introducing the Compensating
Resource Manager
A CRM consists of three components:

� Worker

� Compensator

� Clerk

The worker component is the part of the CRM visible to clients. Worker compo-
nents implement business or data logic of the CRM. For all intents and purposes,
worker components are regular COM+ components that are CRM aware.

The worker component is a transactional component whose transactional
attribute — ideally — is set to Required. Required ensures that the worker runs in
the client’s transaction. Also, Required ensures that the component runs within a
transaction if the client does not have one. If the worker does not run in a transac-
tion, this pretty much defeats the whole purpose of a CRM. CRMs are intended to be
used in situations in which the client is another component running in a transac-
tion. If the client aborts its transaction, the work of the CRM can be rolled back.

The worker component must write entries to a log file. Later, the compensator
uses these entries to either rollback the work of the worker or to make it permanent.
Log entries should be made before the worker performs its work. This concept is
known as write ahead. To understand why write ahead is so important, consider the
following scenario. A worker component executes five lines of code, each modify-
ing data in some way. On the sixth line, the worker writes an entry to the log file.
One day, while the worker is running, someone trips over the server’s power cord
and unplugs the server just as the third line of code is being executed. The power
failure causes the entire system to shutdown (I know an Uninterruptible Power
Supply prevents this). At this point, data is in an inconsistent state. Because the
worker has not written anything to the log, you have no way to determine what
data has been updated and what data has not. The worker can prevent this scenario
by writing records to the log before it performs its work. This is not a guarantee
that a catastrophic failure will not cause problems, but it does help you guard
against these types of problems. Write ahead introduces another problem, however.
If a worker uses write ahead and something like a power failure occurs immediately
after, log records may appear for things that have not happened. The compensator
must have enough savvy to know how to handle these situations. Later in this
appendix, you learn a technique for handling this condition.

The compensator component either commits the work of the worker or undoes its
work, depending on the outcome of the transaction. If the worker’s transaction
commits, the COM+ runtime invokes the compensator to commit the transaction.
The compensator is notified (via a method call) of every log the worker has written.
At this time, the compensator may look at each log record and use that information
to make the worker’s actions permanent.

260 Appendixes

4835-2 AppD.F 8/31/01 8:11 AM Page 260

In the event the transaction is aborted, the compensator must undo any work the
worker component has performed. The compensator is notified of every log record
the worker writes. This gives the compensator an opportunity to undo any work the
worker has performed.

A compensator might be notified multiple times of a transaction’s outcome
(commit or abort). This may happen if failures occur during the final phase of the
transaction. For this reason, a compensator’s work must result in the same outcome
each time the compensator is called. If a compensator is written in this fashion, it is
said to be idempotent. For example, if a compensator opens an XML file and adds
some elements, this is not considered idempotent. If the compensator is called multi-
ple times, multiple elements may be added to the XML file. If, on the other hand, the
compensator opens an XML file and changes an attribute on an element, this might
be considered idempotent. Changing the value of an XML element multiple times
does not result in different outcomes, assuming the attributes value is set to the same
value each time. In reality, idempotency is a hard thing to accomplish without a little
help. In most cases, it is sufficient to implement enough logic to make the compen-
sator’s action idempotent. If, for instance, you have to add an element to an XML file,
you can implement logic to determine if the element exists. If the element does not
exist, you can add it. By checking for the existence of the element, you are, in effect,
making the action idempotent. This rule should make you aware of the fact that the
compensator can be called multiple times during final phases of a transaction.

Be clear that the client never uses the compensator component. Instead, the
COM+ runtime instantiates and consumes the compensator at the appropriate times.
As a CRM developer, you develop both the worker and compensator components.

The clerk component has two responsibilities: it registers the compensator with
the Distributed Transaction Coordinator (DTC) and writes records to the log file. The
compensator must be registered with the DTC so that the DTC knows which compo-
nent to invoke once the worker’s transaction has ended. The worker object uses the
clerk to perform this action. In the .NET Framework, the worker registers the com-
pensator component when the clerk class’s constructor is called. Other options,
such as what phases (transaction abort, transaction success, and so on) the com-
pensator should be notified of, are also defined at this time. You go into these
options in more detail in the next section.

The main job of the clerk is to write records to the log file. Log records are writ-
ten to a memory buffer before they go to disk. This improves performance, as it
minimizes disk access. As log records are written, they go to memory. Once the
buffer is full, they are written to disk. This does present a problem, however. If the
worker’s log entries are not stored on disk but rather held in a volatile memory
buffer, log records can be lost if an application problem exists that causes the appli-
cation to crash. To prevent this, the clerk has a method that forces records held in
memory to be written to disk. It is highly recommended that worker components
use this method before they begin their work. Later, you learn how this is done.

Figure D-1 shows how all of these components fit together within the scope of a
transaction and within the logical scope of the CRM. In Figure D-1, you can see
that the worker component runs within the transaction of the client. You see also
that the worker, compensator, and the clerk work together to form the CRM.

Appendix D: Compensating Resource Managers 261

4835-2 AppD.F 8/31/01 8:11 AM Page 261

Figure D-1: Components of a CRM application

COM+ creates the log file when an application containing CRM components starts.
The log file is located in the %systemroot%\system32\dtclog directory. This is the
same directory that stores the log file for the Distributed Transaction Coordinator.
COM+ creates a log file for each server application that contains a CRM. The log file
is named by using the application ID of the log file with a .crmlog extension.
Remember that the application ID is a GUID used to identify an application uniquely
inside COM+. A CRM log file in this directory might look something like {57206245-
EAA4-4324-92CD-0DBAB17605D5}.crmlog (including the curly braces).

Unfortunately for us developers, the CRM log file is a binary file that cannot be
easily viewed with Notepad or another text editor. As you know, each COM+ server
application must run under a configured identity. By default, this is the Interactive
user account. Server packages can also be configured to run under a user account
other than Interactive user. If an application is configured to run under an account
other than Interactive user, the log file for that application is secured so that only
that user can access the file. However, if the application is configured to run as the
Interactive user, the log file inherits permissions from its parent directory (dtclog).
Incidentally, the dtclog folder inherits permissions from the system32 folder by
default. So why bother to secure the CRM log files? The log files can contain sensi-
tive information, such as account numbers or whatever else you decide to put in the
log. You should be aware that if the identity of the application changes, an admin-
istrator has to change the security settings on the log file. COM+ does not change
this for you automatically.

Application Log File

Compensator
Registered
with DTC

Compensating Resource Manager

Transaction Boundary

Distributed Transaction
Coordinator

Worker uses clerk
to register

Compensator with DTC

CompensatorWorker Clerk
Client

(Transactional Component)

COM+ Runtime

262 Appendixes

4835-2 AppD.F 8/31/01 8:11 AM Page 262

COM+ provides support for CRMs by creating and ultimately managing the CRM
log file and by invoking the compensator when the transaction completes. To gain
this support, a COM+ server application package must have the Enable
Compensating Resource Managers attribute checked. Figure D-2 shows where this
attribute is located on the application’s Advanced settings tab.

Figure D-2: Enabling CRM support

Without this setting, COM+ does not provide any of the services I have men-
tioned. In addition, the clerk component cannot be instantiated unless this attribute
is enabled.

COM+ supports a recovery phase for CRMs. The recovery phase occurs if an
application stops due to either an operating-system crash or some unrecoverable
error inside the application itself. When the application starts again, COM+ reads
the application’s log file to determine if a transaction is pending completion. If a
pending transaction exists, COM+ contacts the DTC service to determine the out-
come of the transaction. The application does not start on its own. It starts when a
component in the application is invoked. This may not be the optimal time to per-
form a recovery on a CRM. I suggest looking into the COM Administration API doc-
umentation for ways to start a CRM application when the system boots or during
nonbusy times of operation. This way, you can avoid a potentially costly recovery
while clients are trying to access your components.

Appendix D: Compensating Resource Managers 263

4835-2 AppD.F 8/31/01 8:11 AM Page 263

Developing Compensating Resource
Managers with C#
As I mention in the beginning of this appendix, CRMs are developed using classes
from the System.EnterpriseServices.CompensatingResourceManager name-
space. Unless specifically noted, all classes mentioned in this section are from this
namespace.

Before you get into the nitty-gritty of this namespace, write a simple CRM appli-
cation so you can get a feel for how the classes in this namespace interact. In this
example, a console application acts as the client. The console client calls the worker
component to move a directory from one location to another. If the transaction
succeeds, the directory is moved from its temporary location in c:\temp to its final
destination. If the transaction fails, it is moved from the temporary directory to its
original location. The compensator component is responsible for moving the direc-
tory from the temporary location to the source or destination directory. For the
compensator to know what source and destination directories it should use,
the worker logs both directories to the log file. The code for this application is in
listing D-1.

Listing D-1: CRM sample application: moving directories

using System;
using System.IO;
using System.Reflection;
using System.EnterpriseServices;
using System.EnterpriseServices.CompensatingResourceManager;

[assembly: AssemblyKeyFile(“C:\\crypto\\key.snk”)]
[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationCrmEnabled]

namespace XCopy
{

[Transaction(TransactionOption.Required)]
public class CWorker : ServicedComponent
{
private Clerk clerk;
public override void Activate()
{
clerk = new Clerk(typeof(XCopy.CCompensator),

“Compensator for XCOPY”,
CompensatorOptions.AllPhases);

}

264 Appendixes

4835-2 AppD.F 8/31/01 8:11 AM Page 264

public void MoveDirectory(string sSourcePath,
string sDestinationPath)

{
clerk.WriteLogRecord(sSourcePath + “;” + sDestinationPath);
clerk.ForceLog();

int iPos;
string sTempPath;

iPos = sSourcePath.LastIndexOf(“\\”) + 1;
sTempPath = sSourcePath.Substring(iPos,

sSourcePath.Length - iPos);

Directory.Move(sSourcePath, “c:\\temp\\” + sTempPath);
}

}

public class CCompensator : Compensator
{
public override bool CommitRecord(LogRecord rec)
{
string sSourcePath;
string sDestPath;
string sTemp;
int iPos;
GetPaths((string)rec.Record, out sSourcePath, out sDestPath);
iPos = sSourcePath.IndexOf(“\\”);
sTemp = sSourcePath.Substring(iPos,

sSourcePath.Length - iPos);
Directory.Move(“C:\\temp\\” + sTemp, sDestPath);

return false;
}

public override bool AbortRecord(LogRecord rec)
{
string sSourcePath;
string sDestPath;
string sTemp;
int iPos;

GetPaths((string)rec.Record, out sSourcePath, out sDestPath);
iPos = sSourcePath.IndexOf(“\\”);
sTemp = sSourcePath.Substring(iPos,

Continued

Appendix D: Compensating Resource Managers 265

4835-2 AppD.F 8/31/01 8:11 AM Page 265

Listing D-1 (Continued)

sSourcePath.Length - iPos);
Directory.Move(“C:\\temp\\” + sTemp, sSourcePath);

return false;
}

private void GetPaths(string sPath,
out string sSourcePath,
out string sDestination)

{
int iPos;
iPos = sPath.IndexOf(“;”);
sSourcePath = sPath.Substring(0, iPos);
iPos++;
sDestination = sPath.Substring(iPos, sPath.Length - iPos);

}
}

public class CClient
{
static void Main(string[] args)
{
CWorker worker = new CWorker();
worker.MoveDirectory(“c:\\dir1”, “c:\\dir2”);

}
}

}

Take a look at this code from the top down. First, declare the namespaces you want
to use. Because this application performs work on the file system, you must declare
the System.IO namespace. This namespace contains the Directory class you use to
move the directories around the file system. The final using statement declares the
CompensatingResourceManager namespace. This should be the only other name-
space that is new to you. All of the other namespaces should look familiar, as you
have seen them in almost every other ServicedComponent class in this book.

In the assembly-attribute section, define the COM+ application to run as a server
package, as this is one of the requirements for a CRM. Also, notice a new attribute
called ApplicationCrmEnabled. This attribute enables CRM support for the appli-
cation. It also causes the Enable Compensating Resource Managers check box from
Figure D-2 to be checked when the application is registered in COM+.

The first class defined in the XCopy namespace is the worker component:
CWorker. This component inherits from the ServicedComponent class, just as any
other COM+ component does. This class requires a transaction.

266 Appendixes

4835-2 AppD.F 8/31/01 8:11 AM Page 266

Every time the CWorker class is activated, it creates a new instance of the Clerk
class. (Remember that activation and instantiation are two different things in
COM+. COM+ activates a component when the COM+ runtime calls the Activate
method that the component overrides from the ServicedComponent class. COM+
instantiates a component when the client of the component calls the C# keyword
new.) The Clerk class constructor registers the compensator component within the
COM+ runtime. Clerk defines two constructors, which differ by their first parame-
ter. The preceding example involves the constructor that takes a System.Type class
as the first parameter. The typeof() keyword appears in other chapters of this
book. Just to refresh your memory, the typeof() keyword is a C# keyword that
returns the System.Type class for a given type. In this example, you pass in the
name of the Compensator class.

The System.Type class is the starting point for applications that use reflec-

tion. Reflection is a technique that allows a developer to determine the

various characteristics of a type. With reflection, a developer can determine

what attributes a class is decorated with, how many constructors a class

supports, and each method and property the type supports, among other

things. In the case of the Clerk class, the type the typeof() keyword returns

allows the .NET runtime to determine what methods the class supports.

The second parameter in the Clerk constructor is a description field that can be
used for monitoring the CRM. The last parameter is an enumeration that tells the
.NET runtime and COM+ what phases of the transaction you want to be notified of.
In your case, you want to be notified of all the phases of the transaction, so pass
CompensatorOptions.AllPhases. There may be occasions on which you want to
be notified only of the commit or abort phases of the transaction. By passing a dif-
ferent value for this enumeration, you can be notified of only those phases.

The MoveDirectory method of the CWorker class performs the business-related
work for this CRM. Before the worker component does any real work, it must first
record what it is going to do in the CRM log file. Logging its actions before it does
any work, the worker component is practicing the write-ahead technique I mention
previously. In my example, I write a single record to the log file. This record contains
the source and destination directories. The instance of the Clerk class is used to write
the log entry. Notice that I combine the source and destination directories into one
log entry. I do not want to write two entries to the log (one for the source directory
and another for the destination directory) because this results in two notifications of
the compensator component when the transaction commits. If this is the case, the
compensator becomes confused, as it gets only the source or destination directories
upon each notification. The WriteLogRecord method does not force the record to be
written to the log. Instead, it writes its data to the memory buffer I mention previ-
ously. To write the record to the log permanently, I must call the ForceLog method.

Appendix D: Compensating Resource Managers 267

4835-2 AppD.F 8/31/01 8:11 AM Page 267

Once I write the log entry and force it to the log file, I am free to go about with
the work of the worker component. I move the source directory to a temporary
location in c:\temp. I do not want to move the directory to the destination, as I do
not know if the transaction will commit or abort. Based on the outcome of the
transaction, I let the compensator decide if the directory should be moved to the
destination or back to the source directory.

Next, the compensator is defined in the source code. The compensator compo-
nent inherits from the Compensator class. This class derives from the
ServicedComponent class. When the application is registered in COM+, both the
worker and compensator show up as serviced components.

The Compensator class provides many virtual methods used for all phases of
the transaction. To keep things simple for this first example, I implement only the
CommitRecord and AbortRecord methods. COM+ calls these methods when
the transaction commits or aborts, respectively.

If the transaction commits, I read the log record to determine the destination
directory. I have to do a little string manipulation here to parse out the paths for
each directory. Once I get the destination directory, I move the directory from its
temporary location to the destination directory. If the transaction aborts, I move the
directory back to the source directory.

The client for the worker component is a simple console application. It creates a
new instance of the worker component and calls the MoveDirectory method, pass-
ing in the source and destination directories. In a real-world application, the client
is most likely another transactional component, but a console application works
fine for our purposes.

If everything goes right within the MoveDirectory method, the transaction
commits. Once the MoveDirectory method returns, the transaction ends and COM+
invokes the compensator component, calling the CommitRecord method.

Of course, things do not always happen as we expect. For example, the source
directory may not exist. In this case, an exception is thrown, which dooms the
transaction. This can cause problems down the line for the compensator in its
AbortRecord method. If the source directory does not exist, the worker is not able
to move the directory to the temporary location. If the transaction aborts, the com-
pensator tries to move a directory in the temporary location that does not exist. To
correct this situation, add a little logic to the compensator and worker to make sure
they do not try to access directories that do not exist. The code in Listing D-2 shows
a more robust MoveDirectory method. Similar logic can be placed in the compen-
sator’s CommitRecord and AbortRecord methods.

Listing D-2: Robust MoveDirectory method

public void MoveDirectory(string sSourcePath,
string sDestinationPath)

{
clerk.WriteLogRecord(sSourcePath + “;” + sDestinationPath);
clerk.ForceLog();

268 Appendixes

4835-2 AppD.F 8/31/01 8:11 AM Page 268

int iPos;
string sTempPath;

iPos = sSourcePath.LastIndexOf(“\\”) + 1;
sTempPath = sSourcePath.Substring(iPos,

sSourcePath.Length - iPos);

if (Directory.Exists(sSourcePath))
{
Directory.Move(sSourcePath, “c:\\temp\\” + sTempPath);

}
}

Now the directory is moved only if the source directory exists on the file system.
This prevents the transaction from aborting, as you are not trying to move a direc-
tory that does not exist.

Granted, most applications require more sophisticated logic than this. For exam-
ple, you may want the transaction to abort if the client does not have proper access
rights to move the directory. The code in Listing D-3 moves the directory only if the
user has the correct privileges. If the client does not have the rights to move the
directory, the transaction is aborted.

Listing D-3: Revised MoveDirectory checking for access rights

public void MoveDirectory(string sSourcePath,
string sDestinationPath)

{
clerk.WriteLogRecord(sSourcePath + “;” + sDestinationPath);
clerk.ForceLog();

int iPos;
string sTempPath;

iPos = sSourcePath.LastIndexOf(“\\”) + 1;
sTempPath = sSourcePath.Substring(iPos,

sSourcePath.Length - iPos);

if (Directory.Exists(sSourcePath))
{
try {
Directory.Move(sSourcePath, “c:\\temp\\” + sTempPath);

}
catch (SecurityException se)
{

Continued

Appendix D: Compensating Resource Managers 269

4835-2 AppD.F 8/31/01 8:11 AM Page 269

Listing D-3 (Continued)

clerk.ForceTransactionToAbort();
}

}
}

In this version of MoveDirectory, I catch the System.Security.
SecurityException exception. This exception is raised if the client does not have
rights to move the directory. For this example, you can assume that the server
application that hosts the CRM is running as the Interactive-user account. The
Interactive-user account allows the application to run under the security context of
the direct caller. A more sophisticated implementation of this practice is to check
the call chain by using COM+ role-based security and to verify that each user in the
call chain has rights to move the directory. However, simply catching the error suf-
fices for this example.

The ForceTransactionToAbort method is the important thing to focus on here.
As the name suggests, this method forces the transaction to abort. This allows you
to implement logic that determines if the transaction should be aborted, rather than
just relying on an error to be thrown or throwing one yourself.

The CommitRecord and AbortRecord methods are not the only methods COM+
calls when the transaction completes. A compensator can also be notified during
the first phase of the physical transaction (see Chapter 4). During this phase, the
following three methods are called (in the following order) on the compensator.

1. BeginPrepare

2. PrepareRecord

3. EndPrepare

All three of these methods are virtual. They are called only if you decide you
need them in your application. It is not strictly necessary for you implement these
methods. These methods are not called during the recovery phase of a CRM trans-
action. The intent of these methods is to allow the compensator to prepare its
resources with the expectation that the transaction is going to commit. If the trans-
action is not going to commit, there is little point in preparing resources. Because
of this reasoning, these methods are not called if the transaction has aborted.

After the methods of the prepare phase are called, the commit methods are called
in the following order.

1. BeginCommit

2. CommitRecord

3. EndCommit

270 Appendixes

4835-2 AppD.F 8/31/01 8:11 AM Page 270

BeginCommit passes a boolean flag to the compensator. This flag indicates
whether or not the compensator is being called during the recovery phase. If the
value of the parameter is true, the compensator is being called during the recovery
phase. You have seen the CommitRecord method. This is the method the compen-
sator should use to commit the work of the worker component. The EndCommit
method notifies the compensator that it has received all log notifications.

A compensator is notified of an aborted transaction in a manner similar to
the way in which it is notified when the transaction commits (minus the prepare
phase, of course). The methods that follow are called in order during an aborted
transaction.

1. BeginAbort

2. AbortRecord

3. EndAbort

Just as with the BeginCommit method, the BeginAbort method is called with a
flag indicating whether the compensator is being called from normal operation or
from the recovery of the application.

The final technique I want to show you is the monitor support built into the
classes of the CompensatingResourceManager namespace. The ClerkMonitor class
is a collection class that contains a list of ClerkInfo classes. The ClerkInfo class
gives you access to properties relating to all of the compensators currently running
within an application. The ClerkInfo class supports the following list of properties.

� ActivityID of the compensator

� Instance of the Clerk used to register the compensator

� Compensator class instance

� Description specified when the compensator is registered

� InstanceID

� Transaction Unit of Work

In the code that follows, I have added another class to the XCopy namespace.

public class CMonitor : ServicedComponent
{
public void ListCompensators()
{
ClerkMonitor cm = new ClerkMonitor();
cm.Populate();

Appendix D: Compensating Resource Managers 271

4835-2 AppD.F 8/31/01 8:11 AM Page 271

ClerkInfo ci = cm[0];
Console.WriteLine(ci.Description);

}
}

Once I create the ClerkMonitor, I must call the Populate method to fill the col-
lection with the known compensators and related CRM information. The
Description field that is printed out to the screen is the same Description field
used when the worker component registers the compensator. Because this applica-
tion has one worker and one compensator component only, I need to access only
the first index of this collection. If more workers and compensators exist, I can loop
through the collection with a foreach loop.

272 Appendixes

4835-2 AppD.F 8/31/01 8:11 AM Page 272

Symbols & Numbers
, (comma), 245, 247

[] (square brackets), 244

503 error message, 202

A
AbortRecord method, 268, 270, 271

abstract keyword, 116, 252

Access Control Entries (ACEs), 67

AccessChecksLevel property, 73

accessors, 25

AccountName property, 80

ACEs. See Access Control Entries (ACEs)

ACID requirements, 47–50, 54, 259

Acrobat Reader (Adobe), 212

Activate method, 110, 116, 117, 267

activation. See also Activate method; Just In

Time Activation (JITA)

gates, 186, 193

limits, 194

Activator class, 163, 180

Active Data Objects (ADO), 56

Active Directory, 124–125, 206

Active Server Pages (ASPs), 39, 199

cache tuning and, 204

IIS and, 198

OfficeMart demo application and, 211

queued components and, 122

security and, 70–71, 79

Active state, 170

ActiveXMessageFormatter, 127

AddRef() function, 28

Administration API, 89, 91

administration queues, 125–126

AdminSubscriber class, 212

ADO. See Active Data Objects (ADO)

Adobe Acrobat Reader, 212

Advanced settings tab, 263

Advanced tab, 95

affinity, basic description of, 70

aggregation, 108

Alias Component dialog box, 191–192

aliases, 185, 191–192

AllowInProSubscribers property, 97–98

AND operator, 92

Any isolation level, 193

apartments, 30–32

APIs. See Application Program Interfaces (APIs)

application(s). See also Application Program

Interfaces (APIs)

domains, 18

IDs, 262

installing classes in, 60–61

MSMQ, developing, 128–131

partitions, 185, 188–191

pooling, 186, 194–195, 200–203

process dump, 185, 191–192

as services, 186–188

Application Dump tab, 191–192

Application Program Interfaces (APIs). See also

specific APIs

activation lifecycles and, 41

CRM (Compensation Resource Manager)

and, 263

error handling and, 1

models based on, 215

queued components and, 122

SPM and, 215, 219–229

Application Properties dialog box, 194

ApplicationAccessControl attribute, 73, 74,

75, 77

ApplicationActivation attribute, 60

ApplicationCrmEnabled attribute, 266

ApplicationName attribute, 60

ApplicationQueuing attribute, 146

arrays

basic description of, 243–246

compilers and, 244

273

Index

4835-2 Index.F 8/31/01 8:11 AM Page 273

ASPs. See Active Server Pages (ASPs)

assemblies. See also Global Assembly Cache

(GAC)

basic description of, 12–18

Global Assembly Cache and, 14–15

locating, 15–18

manifest and, 12–13

registering, 33–38

shared names and, 14

versioning and, 13–14

Assemblies collection, 16

Assembly Registration Tool

basic description of, 33–38

parameters, 33–34

AssemblyKeyFile attribute, 93

atomic rule, 47–48. See also ACID requirements

attribute(s)

attribute-based programming, 59–60, 65

events and, 89–91

authentication. See also security

Basic, 70–71

configuring, 72–75

digest, 70–71

IIS and, 71–72

integrated Windows, 70–71

levels, list of, 74

over the wire, 70–72

overview of, 66–67

remoting and, 174

security scope and, 78–79

Authentication property, 74

authorization. See also security

basic description of, 67

configuring, 72–75

Authorization attribute, 73

AutoComplete attribute, 53, 61–62, 116

AutoDone attribute, 52–53

autolayout option, 6

Automatic Transaction Enlistment, 55–56, 109

B
backups, metabase, 205–206

bandwidth, 198

Bark() method, 251–252

Base Application partition, 191

batch processing, 141

BeginAbort method, 271

BeginCommit method, 270, 271

BeginPrepare method, 270

BinaryMessageFormatter, 127

BindToMoniker method, 136–137, 147

black-box functionality, 11

Boolean property, 146

boot keyword, 247

boxing, 19, 227

break statement, 237

Breed property, 24–25

Byte keyword, 246

C
C++ (high-level language), 7, 25

Common Type System and, 19

loops and, 241

call

authentication level, 74

chain security, 79–80

limits, 194

stacks, 156

Callers property, 80

CanBePooled method, 110, 116

case statement, 237, 238, 239

catch statement, 239–240

CAuthors component, 76–77

CCW. See COM Callable Wrapper (CCW)

CD (C# COM+ Programming)

files on, basic description of, 210–212

installing items from, 210

problems with, troubleshooting, 213

technical support for, 213

system requirements for, 209

using, with Microsoft Windows, 210

CDog class, 24, 35–38

CFoo class, 7, 107, 165–166, 168, 178, 180–182

ChangeValue method, 242–243

channels, 168–169

Char keyword, 247

CHelloWorld class, 23

class(es). See also class identifiers (CLSIDs)

basic description of, 250–253

child, 116

factories, 42, 136

indexers and, 255

274 Index

4835-2 Index.F 8/31/01 8:11 AM Page 274

installing, 60–61

instances, storing, 228–229

methods inside, 252

class identifiers (CLSIDs), 41, 67

component aliasing and, 191

events and, 91, 95

object pooling and, 101–102

queued components and, 145, 149

class keyword, 251

Class Loader, 5–7, 42

Class_Terminate event, 10

Clerk class, 267

clerk component, 260–262

Clerk constructor, 267

ClerkInfo class, 271

ClerkMonitor class, 242, 271–272

client(s). See also servers

analyzing, 117–118

client-activated ServicedComponent class,

183–184

client-side error handling, 139–140

object pooling and, 117–118

queued components and, 131–132, 139

requirements, 131–132

Close method, 10, 44

CLR. See Common Runtime Language (CLR)

CLSIDs. See class identifiers (CLSIDs)

CName class, 228–229

CoCreateInstance API, 42

code

executing, inside the CLR, 4–12

loading code, inside the CLR, 4–12

managed, basic description of, 3–4

unsafe, 255–257

CodeBase attribute, 16

COM Callable Wrapper (CCW)

activation lifecycles and, 41–42

basic description of, 38–44

marshalling method calls and, 40–41

object pooling and, 108

preserving object identity and, 39

proxying interfaces and, 40

standard COM interfaces and, 39–40

ComAliasName attribute, 26

comma (,), 245, 247

commit protocol, two-phase, 57

CommitRecord method, 268, 270, 271

Common Runtime Language (CLR)

application domains and, 18

assemblies and, 12–18

automatic memory management and, 7–12

basic description of, 1

executing code inside, 4–12

Global Assembly Cache and, 14–15

loading code inside, 4–12

manifest and, 12–13

object pooling and, 107–108

portability and, 5

shared names and, 14

versioning and, 13–14

Common Type System, 18–19

Compensation Resource Manager (CRM)

basic description of, 259–272

log files and, 262–263, 267–268

XML and, 259, 261

Compensator class, 267, 268

compensator component, 260–262

compiler(s). See also Just In Time (JIT)

Compiler

arrays and, 244

directives, 234

metadata and, 5

component(s). See also queued components

aliasing, 191–192

attribute-based programming and, 59–60

design considerations for, 43–44, 141–142

disabling, 51

LCE, 92–100

lifetimes, 123

nonpooled, 111–117

pooled, 111–117

public/private, 186

registering, 60–61

transaction, writing, 58–64

Component Services Explorer, 52–53, 89, 90,

94–97

Component Services snap-in, 191

ComponentAccessControl attribute, 77–78

Index 275Index 275

4835-2 Index.F 8/31/01 8:11 AM Page 275

Computer Browser services, 186

Computer Management Console, 126–127

ComTransaction namespace, 62

ComVisible attribute, 36

Connect authentication level, 74

consistent rule, 48. See also ACID requirements

Construct method, 117

ConstructionEnabled attribute, 116

constructors

basic description of, 249

Clerk constructor, 267

client code and, 249

parameterized, 162–163

parameterless, 250

context(s)

transactions and, 50–51

use of the term, 31

ContextBoundObject class, 159

ContextID property, 216

ContextUtil class, 51–53, 58, 60, 143, 216

continue statement, 238

converting

assemblies, 33–37

enums, 25–27

exceptions, 43

modules, 25–27

type libraries, 21–27

Counter property, 232

counters

loading, 11–12

JIT Compilation, 11

CreateInstance method, 42–43, 163, 183–184

CreateProperty method, 223–224

CreatePropertyByPosition method, 224

CreatePropertyGroup method, 220, 222, 223

CreationTimeout attribute, 104–106, 115

CRM. See Compensation Resource Manager

(CRM)

CRoot class, 63–64

cryptography, 14. See also security

CStatic class, 218

CurrentCall property, 80

Currently renewing state, 170

Customers class, 212

CustomerSubscriber class, 212

CWorker component, 266–267

CWorker1 class, 63–64

CWorker2 class, 63–64

D
DACL. See Discretionary Access Control List

(DACL)

data types

basic description of, 246–248

Common Type System and, 18–19

events and, 97

marshalling process and, 41

SOAP and, 174

standard, importance of using, 44

DCOM. See Distributed COM (DCOM)

Deactivate method, 110, 116

debuggers, 191. See also errors

decimal keyword, 247

dedicated-application mode, 203

Default property, 116

delegate keyword, 84

Description attribute, 60

Description field, 272

design issues, for components, 43–44, 141–142

directories, moving, 264–272

Directory class, 266

DisableCommit class, 52–53

Disabled attribute, 51, 62

disabled components, 51

Discretionary Access Control List (DACL), 67, 68

disk drive(s)

installing items from the CD to, 210

requirements, for the CD, 209

Dispose method, 10, 44

Distributed COM (DCOM), 70, 122, 155

Distributed Transaction Coordinator (DTC), 56,

261–263

distribution lists, 206

DivideByZeroException, 229, 232

dllhost.exe, 60, 73, 114, 194, 200

do loops, 241

Dog class, 251, 252–253

DoSomething method, 165–166, 223, 225–228

DoSomethingElse method, 225

double keyword, 247

276 Index

4835-2 Index.F 8/31/01 8:11 AM Page 276

DTC. See Distributed Transaction Coordinator

(DTC)

dtclog folder, 262

durable rule, 49–50. See also ACID

requirements

E
else statement, 235–236

EnableCommit class, 52

Enabled property, 115, 146

EndAbort method, 271

endpoints, basic description of, 157

EndPrepare method, 270

EngineSize property, 253–254

EnterpriseServices namespace, 60–61, 72,

97

enums, converting, 25–27

error(s). See also debuggers; exceptions

handling, 1, 187

HTTP 503 message, 202

IIS and, 202

remoting and, 176–177

event(s). See also Loosely Coupled Events

(LCEs); Tightly Coupled Events (TCEs)

basic description of, 83

classes, 87

queued components and, 143, 148–149

subscriptions and, 89–92, 95–97

using transactions with, 98–100

event keyword, 85

Event System, 186

EventClass attribute, 94, 97–98, 148

EventReceiver class, 85, 87

EventSource class, 85

Everyone group, 68, 77–78

exception(s). See also errors

ArgumentException, 225–226

catching, 224–226

classes, 140, 145, 149–151

DivideByZeroException, 218, 229, 232

handling, 137–140, 239–241

SPM (Shared Property Manager) and,

224–225

throwing, 43

UnauthorizedAccessException, 81

ExceptionClass attribute, 149

ExecuteCategoryQuery method, 111, 116

ExecuteNoQuery method, 116

executing, code inside the CLR, 4–12

expiration timeout, 194

Expired state, 170

explicit layout option, 6

eXtensible Markup Language (XML)

assemblies and, 15

Class Loader and, 6

CRM (Compensation Resource Manager)

and, 259, 261

metabase and, 197–198, 205–206

queued components and, 127, 130–131

remoting and, 155, 169, 172–173

security and, 70

strings, passing, 43

F
fExists parameter, 221, 223

File Transfer Protocol (FTP), 172

files

on the CD, basic description of, 210–212

on the CD, installing, 210

Filter Criteria dialog box, 91–92

filtering

parameters, 91–92

publishers, 91, 97

finalClientRetry method, 140, 151

finalization, nondeterministic, 10, 107, 133

Finalize method, 10–11, 28

finally statement, 240

FinalServerRetry method, 140, 151

Fire in Parallel attribute, 90, 98

FireEvent method, 86

FireInParallel property, 97

fixed statement, 256–257

Float keyword, 247

flow-control statements, 235–241

for loop, 241

ForceLog method, 267

ForceTransactionToAbort method, 270

foreach loop, 242, 272

formatters, 127

FTP. See File Transfer Protocol (FTP)

Index 277

4835-2 Index.F 8/31/01 8:11 AM Page 277

G
GAC. See Global Assembly Cache (GAC)

Garbage Collection, 3–4, 165, 170

basic description of, 8–12

generational, 9–10

memory management and, 8–9

object lifetimes and, 28

object pooling and, 107

queued components and, 133

unsafe code and, 256–257

GC class, 28

Get method, 172, 254

GetLifeTimeService method, 171

GetObjectData method, 158–159

GetTypeInfoCount() function, 44

GINA. See Graphical Identification

Authentication (GINA)

Global Assembly Cache (GAC), 14–15, 17–18,

213. See also assemblies

events and, 93–94

object pooling and, 114

placing assemblies in, 24

Globally Unique Identifiers (GUIDs)

application partitions and, 189

CRM (Compensation Resource Manager)

and, 262

events and, 88

object pooling and, 102–103

queued components and, 149

Goto method, 42

goto statement, 237, 238–239

graphical user interfaces (GUIs)

security and, 69

transactions and, 54–55

Graphical Identification Authentication

(GINA), 65

Guest accounts, 68

GuidAttribute attribute, 102–103, 149

GUIDs. See Globally Unique Identifiers (GUIDs)

GUIs. See graphical user interfaces (GUIs)

H
hard drive(s)

installing items from the CD on, 210

requirements, for the CD, 209

health monitoring, 203

heap. See also memory

counters, 12

memory management and, 8–9

pointers, 8

Hello method, 23

HelloWorld component, 22–23, 144–147

HTTP. See HyperText Transfer Protocol (HTTP)

http.sys, 198, 199–200

Hungry Minds Customer Service, 213

HyperText Transfer Protocol (HTTP)

503 error message, 202

headers, 172–173

IIS and, 198, 199–202

queued components and, 122

security and, 70–72

remoting and, 155, 157, 168–169, 172–173,

177–181

SingleCall component using, 177–181

I
IBM. See International Business Machines

(IBM)

IChannelReceiver interface, 169

IChannelSender interface, 169

IConnectionPoint interface, 30

IConnectionPointContainer interface, 30

iCount field, 218

iCount variable, 229

idempotent compensators, 261

IDispatch interface, 30, 39–40, 44

idle timeouts, 203–204

IErrorInfo interface, 30

if statement, 235–236

if-else statement, 235–236

IIS. See Internet Information Server (IIS)

ILease interface, 170

IList interface, 42

278 Index

4835-2 Index.F 8/31/01 8:11 AM Page 278

IMessage interface, 166, 167–168

impersonation, 69, 71

levels, 75

security scope and, 78–79

IMultiPublisherFilter interface, 91

IMyEvents interface, 93, 94, 95

indexers, basic description of, 255

index.html, 157

Initialized but not activated state, 170

InitializeLifetimeService method, 171

insecure backups, 205

installing

classes, 60–61

files from the CD, 210

Microsoft Message Queue (MSMQ), 124–125

Int keyword, 247

integer data type, 247, 248, 250

Interactive Users, 68–69

interface(s). See also specific interfaces

proxying, 29–30, 40

standard, 39–40

InterfaceQueuing attribute, 147

internal members, 253

International Business Machines (IBM), 122

Internet Information Server (IIS)

kernel mode driver, 196–198

modes, 203

new features of, 195–206

service applications and, 186–187

understanding authentication in, 71–72

XML metabase and, 205–206

Internet Server API (ISAPI), 122, 199, 203

Interop boundary, 43

InventoryConn class, 212

Invoke method, 167

IObjectControl interface, 109, 110, 116

IPersistStream interface, 142

IPlaybackControl interface, 140, 151

IPublisherFilter interface, 91

IQC interface, 145, 148

ISAPI. See Internet Server API (ISAPI)

IsCallerInRole() function, 143

ISerializable interface, 158–159

isolated rule, 48–49, 259. See also ACID

requirements; isolation levels

isolation levels, 186, 192–193

ISponsor interface, 171

ISupportErrorInfo interface, 30

IsUserInRole method, 80

iterators, 241

IUnknown interface, 27–28, 29, 39–40, 42

iVar variable, 237–239

J
JIT Compiler. See Just In Time (JIT) Compiler

JITA. See Just In Time Activation (JITA)

Joint Photographics Experts Group (JPEG)

files, 12

JPEG files. See Joint Photographics Experts

Group (JPEG) files

jump statement, 237, 238–239

Just In Time Activation (JITA), 52–53, 61–62,

115. See also activation

object pooling and, 106–107, 111

remoting and, 163

Just In Time (JIT) Compiler, 4, 5. See also

compilers

basic description of, 7

Compilation Counters, 11–12

Garbage Collection and, 9

Global Assembly Cache and, 15

invocation of, by stubs, 7

remoting and, 163, 164

JustInTimeActivation attribute, 61–62, 115

K
kernel mode driver, 196–198

L
layoutsequential option, 6

lazy registration, 60

LCEs. See Loosely Coupled Events (LCEs)

legacy backups, 205

Index 279

4835-2 Index.F 8/31/01 8:11 AM Page 279

lifecycle(s)

activation, 41–43

logical, 50–51

physical, 55–57

transaction, 50–51, 55–56

lifetime

limit, 194

of objects, maintaining, 28–29

Listen attribute, 144, 146

listener, 132–135

ListenerHelper component, 134–135, 143

loading, code inside the CLR, 4–12

Local Security Authority (LSA), 65

locking

isolation levels and, 186, 192–193

modes, 220–222

SPM (Shared Property Manager) and, 218,

220–222

tables, 48–49

log files, 262–263, 267–268

logon, 66–67. See also authentication

LogTransactionID method, 59

Long keyword, 247

longitude field, 250

loops, writing, 241–242

Loosely Coupled Events (LCEs), 143, 148–149.

See also events

architecture for, 89–90

attributes and, 89–91

comparing TCE events to, 86–87

components for, writing, 92–100

need for, 83–87

low-memory activation gates, 186, 193

LSA. See Local Security Authority (LSA)

M
Main method, 218, 231

managed code, basic description of, 3–4

manifest, 12–13

Marshal class, 136, 143

MarshalByRefObject class, 159, 177

marshaling

by reference, 158–159

method calls, 30

remoting and, 156

by value, 158–161

MaxPoolSize attribute, 104–106

MaxPoolSize property, 115

MDAC. See Microsoft Data Access Components

(MDAC)

memory. See also Shared Property Manager

(SPA)

activation gates, 186, 193

application process dumps, 185, 191

classes and, 6, 250–251

Common Type System and, 19

conflicts, 216–218

counters, 11–12

CRM (Compensation Resource Manager)

and, 267–268

JIT and, 7

limits, 194

low, 186, 193

management, automatic, 7–12

pointers, 255–257

release modes and, 220–221

remoting and, 156

requirements, for the CD, 209

sharing, among threads, 215–218

unsafe code and, 256–257

message(s)

message-passing architecture, 43

poison, 137–138

priority, 127

properties, 127

triggers, 206

Message class, 128–131

MessageQueue class, 128–131

metabase(s)

backups, 205–206

basic description of, 205–206

metadata

Common Type System and, 18

MSIL and, 4–5

transactions and, 61

method(s)

calls, marshalling, 30, 40

inside classes, 252

parameters, 242–243

signatures, 84–85

virtual, 116

280 Index

4835-2 Index.F 8/31/01 8:11 AM Page 280

Microsoft Active Server Pages (ASPs), 39, 199

cache tuning, 204

IIS and, 198

OfficeMart demo application and, 211

queued components and, 122

security and, 70–71, 79

Microsoft Data Access Components (MDAC), 70

Microsoft Intermediate Language (MSIL)

Disassembler, 22–23

JIT and, 7

metadata and, 4–5

portability and, 5

Microsoft Internet Information Server (IIS). See

also servers

kernel mode driver, 196–198

modes, 203

new features of, 195–206

service applications and, 186–187

understanding authentication in, 71–72

XML metabase and, 205–206

Microsoft Message Queue (MSMQ). See also

queued components

administration snap-in, 126

API, 123, 128

applications, developing, 128–131

basic description of, 124–131

installing, 124–125

LDAP support in, 206

listeners and, 132–135

new features of, 206

players and, 132–135

queue categories, 125–128

recorders and, 132–135, 143

remoting and, 168, 172

transport mechanisms, 131–132

Microsoft SQL Server, 49, 56

object pooling and, 115

OfficeMart demo application and, 211

Microsoft Transaction Server (MTS), 185–186

Microsoft Visual Basic

for Applications (VBA), 39

arrays and, 243–244

assemblies and, 12

COM interfaces and, 39

loops and, 241

memory management and, 7

transactions and, 51

typedefs and, 25

Type Library Importer and, 22–27

Microsoft Visual Studio, 1, 4

Microsoft Windows

Security Architecture, 65

Shell extension, 14

using the CD with, 210

MinPoolSize attribute, 104–106, 115

Mode attribute, 16

modifiers, 253

modules

assemblies and, 13

basic description of, 13

converting, 25–27

monikers, 136

MoveDirectory method, 267, 268–270

MoveFirst method, 42

MoveLast method, 42

MQ Series (IBM), 122

MSIL. See Microsoft Intermediate Language

(MSIL)

MSMQ. See Microsoft Message Queue (MSMQ)

MTAs. See MTA Multi-Threaded Apartment

(MTAs)

MTS. See Microsoft Transaction Server (MTS)

mtx.exe, 200

Multi-Threaded Apartment (MTAs), 31–32

My Computer, 14–15

MyApplication namespace, 234

MyEventClass class, 93, 94, 95

MySubscriberClass class, 93, 94

MyTransactionRoot class, 99–100

N
namespaces

basic description of, 233–235

converting type libraries to, 21–27

MSIL Disassembler and, 23

namespaces within, 234

NAT. See Network Address Translation (NAT)

Index 281

4835-2 Index.F 8/31/01 8:11 AM Page 281

.NET Framework

components, 21–32, 33–44

event architecture, 84–86

the future of COM+ and, 185–208

namespaces, converting type libraries to,

21–27

Software Development Kit (SDK), 11, 13–14,

60, 191, 206

threading issues and, 30–32

understanding, 3–4

NetBios names, 173

Network Address Translation (NAT), 70

new keyword, 7, 11, 135–136, 249

New Subscription Wizard, 96

nondeterministic finalization, 10, 107, 133

None authentication level, 74

NonPooledObject class, 115, 116

NonSerializable attribute, 159

Not initialized state, 170

NOT operator, 92

Not Supported attribute, 51, 62

Notepad, 198

O
object(s). See also object pooling

client-activated, 161, 162–163

context-bound, 161

developing, 62–63

lifetime of, 28–29, 169–171

memory management and, 7–8

preserving the identity of, 27, 39

requirements for, 108–110

root, 62–63

server-activated, 161, 163–165

stateless, 108

transactional, 109–110

well-known, 158

worker, 62–63

Object Linking and Embedding (OLE), 56, 115

object pooling

attributes, 104–106

basic description of, 101–110

clients, 117–118

components, 111–117

nondeterministic finalization and, 107

scalability and, 106–107

transactions and, 109–110

when to use, 103–104

ObjectPooling attribute, 114–115

ObjectPoolLib namespace, 111

ObjRef class, 167

OfficeMart application

architecture of, 211–212

basic description of, 210–212

problems with, troubleshooting, 213

OfficeMartLib.dll, 212

OLE. See Object Linking and Embedding (OLE)

on-demand start, 203–204

OnEvent method, 86

operators, 92, 256

Options tab, 91

OR operator, 92

OrderEvt class, 212

Orders class, 211

Organizational Units (OUs), 191

Originator attribute, 17

OUs. See Organizational Units (OUs)

P
Pack Integrity authentication level, 74, 75

Packet authentication level, 74, 75

Packet Private authentication level, 74

parameter filtering, 91–92

parameterized constructors, 162–163

partition(s)

attributes, 189–190

IDs, 189

names, 189

setting up, 185, 188–191

Partitions folder, 190

passwords. See also security

basic authentication and, 71–72

security scope and, 79

ping, 203–204

PlaceOrder method, 176, 180

players, 132–135

pointers, 255–257

poison messages, 137

PooledObject class, 115

PooledObject namespace, 114

282 Index

4835-2 Index.F 8/31/01 8:11 AM Page 282

pooling

applications, 186, 194–195, 200–203

objects, 101–110

Pooling & Recycling tab, 194, 195

Populate method, 272

portability, 5

Post method, 172

power outages, 49–50

PrepareRecord method, 270

PrintTransactionId method, 99–100

private members, 253

process(es)

affinity, 203–204

recycling, 186, 193–194

restarting, 204

worker, 203–204

IIS and, 204

JIT and, 7

memory management and, 8

requirements for the CD, 209

Products class, 212

ProgIDs, 37, 145

component aliasing and, 191

queued components and, 149

properties

basic description of, 253–254

creating, 222–226

grouping, 221–222

locking, 220–222

release modes for, 220–222

Property method, 224

PropertyByPosition method, 224

PropertyLockMode parameter, 220–221

PropertyReleaseMode parameter, 220–221

protected internal members, 253

protected members, 253

proxies. See proxying interfaces

real, 167–168

remoting and, 165–168

transport, 165–166

proxying interfaces, 29–31, 40. See proxies

public key cryptography, 14

public members, 253

Publisher ID attribute, 91

PublisherFilter property, 97

PublisherFilterCLSID property, 91

publishers

basic description of, 87–88

filtering, 91, 97

Q
QC class, 148

QCSubscriber class, 148

QFE. See Quick Fix Engineering (QFE)

QueryInterface() function, 27

Queued attribute, 144, 145

queued components. See also components;

Microsoft Message Queue (MSMQ)

basic description of, 121–151

client and server requirements for, 131–132

design considerations for, 141–142

developing, 144–151

exception handling and, 137–140

instantiating, 135–137

loosely coupled events and, 143, 148–149

making the case for, 122–124

samples of, on the CD, 210, 211

transactions and, 143

using other services with, 142–143

QueueListenerEnabled property, 146

Quick Fix Engineering (QFE), 14–17

R
Rapid Fail Protection, 202

RCW. See Runtime Callable Wrapper (RCW)

RDS. See Remote Data Services (RDS)

read

committed isolation level, 193

committed level, 49

locks, 48

uncommitted isolation level, 193

unconmitted level, 49

/write properties, 91

recorders, 132–135, 143

ref keyword, 142, 221, 242

ref statement, 242

reference types, 18–19

reflection, 1, 267

Index 283

4835-2 Index.F 8/31/01 8:11 AM Page 283

Register method, 171

Registry, 5, 41

registering assemblies in, 33–38

registering components in, 60–61

Regsvcs, 60, 61, 78, 100–102

Release() function, 28, 39

release modes, 220–222

ReleaseComObject method, 29, 136, 137, 147

reliability, 123, 195

Remote Data Services (RDS), 70

Remote Procedure Call (RPC) protocol, 70, 121,

122, 172

RemoteComponent class, 178–181, 184

RemoteComponentName component, 157

remoting

activating remote objects, 161–165

basic description of, 155–184

channels and, 168–169

context-bound objects and, 161

proxies and, 165–168

remote object lifetime and, 169–171

well-known objects and, 158

RemotingConfiguration class, 181

Renew method, 171

RenewOnCallTime property, 171

repeatable read isolation level, 193

repeatable read level, 49

report queues, 125–126

Required attribute, 51, 52, 62, 55

RequiresNew attribute, 51, 52, 55, 62

response queues, 125–126

retrieve() method, 251–252

return statement, 239

role-based security, 76–78, 142–143

RPC (Remote Procedure Call) protocol. See

Remote Procedure Call (RPC) protocol

Run Application as NT Service option,

186

Runtime Callable Wrapper (RCW)

basic description of, 27–30

maintaining object lifetimes and, 28–29

marshalling method calls and, 30

preserving object identity and, 27

proxying interfaces and, 29–30

threading issues and, 30–32

S
SACL. See System Access Control List (SACL)

SAM. See Security Accounts Manager (SAM)

SAS. See Secure Attention Sequence (SAS)

SayHello method, 148

Sbyte keyword, 246

scalability

basic description of, 106

IIS and, 195, 201

JIT and, 7

object pooling and, 106–107

queued components and, 123

scheduling workloads, 123

schemas, basic description of, 65

scope, 54–55, 78–81

Secure Attention Sequence (SAS), 66

SecuredComponent class, 77–78

security. See also authentication

authorization, 72–75

backups and, 205

cryptography, 14

impersonation and, 69, 71, 75, 78–79

model, 65, 72–78

module, 26–27

passwords, 71–72, 79

role-based, 76–68, 142–143

scope, 78–81

special accounts and, 68–69

Security Accounts Manager (SAM), 65

Security Identifiers (SIDs), 67, 79

Security tab, 72–73

SecurityCallContext class, 80

SecurityCallers class, 80

SecurityIdentity class, 80

select statement, 116

serializable level, 49

Serialized isolation level, 192–193

server(s). See also Microsoft Internet

Information Server (IIS); Microsoft

Transaction Server (MTS)

modes, 203

queued components and, 131–132, 137–139

284 Index

4835-2 Index.F 8/31/01 8:11 AM Page 284

requirements, 131–132

server-side error handling, 137–139

service applications, 186–188

Service Setup dialog box, 186–187

ServicedComponent class, 58–61, 94, 99, 142,

147

client-activated, 183–184

object pooling and, 103, 107–118

remoting and, 155, 158–161, 177–174,

183–184

Services MMC snap-in, 187

set method, 254

SetAbort method, 53, 54

SetComplete method, 54

SetupAbort() function, 143

shared names, basic description of, 14

Shared Property Manager (SPM), 109, 215–232

API, 219–229

memory conflicts and, 216–218

solving static problems and, 229–232

SharedProperty class, 223–224, 226–229

SharedPropertyGroup class, 222–226

SharedPropertyGroupManager class, 219–222

Short keyword, 246

SIDs. See Security Identifiers (SIDs)

Simple Mail Transfer Protocol (SMTP), 172, 168

Simple Object Access Protocol (SOAP), 70, 155,

169

introduction to, 171–177

queued components and, 121, 122

SingleCall component using, 177–181

Single Threaded Apartments (STAs), 31–32

SingleCall component, 163, 164, 177–183

Singleton objects, 163–164

Sit() method, 251–252

SMTP. See Simple Mail Transfer Protocol

(SMTP)

SOAP. See Simple Object Access Protocol

(SOAP)

Software Development Kit (.NET Framework),

11, 13, 191, 206

Global Assembly Cache and, 14

transactions and, 60

SomeComponent class, 221

special accounts, 68–69

SPM. See Shared Property Manager (SPM)

SQL Server (Microsoft), 49, 56

object pooling and, 115

OfficeMart application and, 211

square brackets ([]), 244

STAs. See Single Threaded Apartments (STAs)

Standard mode, 203

StartTransaction method, 100

static modifier, 215–216

static problems, solving, 229–232

struct keyword, 248

structures. See also specific structures

basic description of, 248–250

classes and, 251

stub(s)

basic description of, 7

code, 22

creating of, 7

subscribers. See also subscriptions

basic description of, 87–88

in-process, allowing, 90

notification order for, 91–92

subscriptions. See also subscribers

basic description of, 89

creating, 95–97

Supported attribute, 51, 52, 62

switch statements, 236–239

synchronization

basic description of, 54

transactions and, 54, 61–62

Synchronization attribute, 61–62

System Access Control List (SACL), 67

System namespace, 58–59, 81, 180, 237

data types and, 246

structures and, 248

System package, 186

system requirements, for the CD, 209

system32 folder, 262

System.Int32 structure, 246

Index 285

4835-2 Index.F 8/31/01 8:11 AM Page 285

T
tables, locking, 48–49

TargetTypeName property, 131

TCEs. See Tightly Coupled Events (TCEs)

TCP. See Transmission Control Protocol (TCP)

TCP/IP. See Transmission Control

Protocol/Internet Protocol (TCP/IP)

technical support, for the CD, 213

text editors, 198

this keyword, 255

thread(s)

affinity to particular, 108–109

object pooling and, 108–109

sharing memory among, 215–217

Thread class, 217

Threading namespace, 217

Tightly Coupled Events (TCEs). See also events

basic description of, 83–87

LCEs and, comparison of, 86–87

timeouts, 194, 203–204

ToString() function, 7

transaction(s)

ACID requirements and, 47–50, 54

attribute-based programming and, 59–60

AutoComplete and, 61–62

automatic enlistment of, 55–56

basic description of, 47–64

casting votes and, 53–54

components, writing, 58–64

declarative, 51

division of, into two parts, 50

just in time activation and, 52–53, 61–62

lifecycles, 50–51, 55–56

managers, 50, 56

object pooling and, 109–110

process, understanding, 50–57

queued components and, 143

remoting and, 174

scope of, 54–55

synchronization and, 61–62

two-phase commit protocol and, 57

using, with events, 98–100

Transaction attribute, 61

TransactionContext class, 54–55

Transmission Control Protocol/Internet Protocol

(TCP/IP)

IIS and, 198

remoting and, 155, 157, 168–169, 173,

181–183

System.Net.Sockets namespace and, 5

Transmission Control Protocol (TCP), 157,

181–183

transport proxies, 165–166

troubleshooting, problems with the CD, 213

try-catch blocks, 239–240

two-phase commit protocol, 57

type attribute, 179

type libraries

converting assemblies to, 33–37

importing, 21–27, 33

Type Library Importer, 21–27, 33

typedefs, converting, 25–27

typeof keyword, 267

typeof statement, 180

U
Uint keyword, 247

Ulong keyword, 247

UnauthorizedAccessException, 81

unboxing, 227

Uniform Resource Indicators (URIs), 168, 198

Uniform Resource Locators (URLs)

endpoints and, 157

remoting and, 172, 173, 175, 177, 183

UnRegister method, 171

unsafe code, 255–257

unsafe keyword, 256–257

URI. See Uniform Resource Indicators (URIs)

URLs. See Uniform Resource Locators (URLs)

Ushort keyword, 246

using keyword, 234

V
Value property, 226, 227, 229

VerifyCustomer class, 212

VerifyProduct class, 212

286 Index

4835-2 Index.F 8/31/01 8:11 AM Page 286

versioning, basic description of, 13–14

Virtual Function Tables (VTables), 30, 42

virtual keyword, 116

virtual methods, 116

Visual Basic (Microsoft)

for Applications (VBA), 39

arrays and, 243–244

assemblies and, 12

COM interfaces and, 39

loops and, 241

memory management and, 7

transactions and, 51

typedefs and, 25

Type Library Importer and, 22–27

Visual Studio (Microsoft), 1, 4

votes, casting, 53–54

VTables (Virtual Function Tables). See Virtual

Function Tables (VTables)

W
WaitForPendingFinalizers() function, 28

WAS (Web Administration Service). See Web

Administration Service (WAS)

Web Administration Service (WAS), 196–197,

205

Web gardens, 200–202

web.config file, 178–179, 181

while loops, 241–242

Win32 applications, 18, 155, 169

worker

components, 260–262, 267

objects, 62–63

processes, 197, 203–204

write ahead, concept of, 260

write locks, 48

WriteEntry method, 238

WriteLogRecord method, 267

X
XCopy namespace, 266, 271

XML (eXtensible Markup Language). See

eXtensible Markup Language (XML)

XmlMessageFormatter, 130–131

Index 287

4835-2 Index.F 8/31/01 8:11 AM Page 287

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before open-
ing the software packet(s) included with this book (“Book”). This is a license agree-
ment (“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the
accompanying software packet(s), you acknowledge that you have read and accept
the following terms and conditions. If you do not agree and do not want to be
bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a
nonexclusive license to use one copy of the enclosed software program(s)
(collectively, the “Software”) solely for your own personal or business
purposes on a single computer (whether a standard computer or a work-
station component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disk, CD-ROM, or other storage device).
HMI reserves all rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including
copyright, in and to the compilation of the Software recorded on the
disk(s) or CD-ROM (“Software Media”). Copyright to the individual
-programs recorded on the Software Media is owned by the author or
other authorized copyright owner of each program. Ownership of the
Software and all proprietary rights relating thereto remain with HMI
and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may
not (i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer sub-
scriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.
You may transfer the Software and user documentation on a perma-
nent basis, provided that the transferee agrees to accept the terms and
conditions of this Agreement and you retain no copies. If the Software
is an update or has been updated, any transfer must include the most
recent update and all prior versions.

54835-2 EULA.F 8/31/01 8:11 AM Page 288

4. Restrictions on Use of Individual Programs. You must follow the individ-
ual requirements and restrictions detailed for each individual program
in Appendix A of this Book. These limitations are also contained in the
individual license agreements recorded on the Software Media. These
limitations may include a requirement that after using the program for
a specified period of time, the user must pay a registration fee or discon-
tinue use. By opening the Software packet(s), you will be agreeing to
abide by the licenses and restrictions for these individual programs that
are detailed in Appendix A and on the Software Media. None of the
material on this Software Media or listed in this Book may ever be
redistributed, in original or modified form, for commercial purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from
defects in materials and workmanship under normal use for a period of
sixty (60) days from the date of purchase of this Book. If HMI receives
notification within the warranty period of defects in materials or work-
manship, HMI will replace the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE
WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have
other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for defects in materials
and workmanship shall be limited to replacement of the Software
Media, which may be returned to HMI with a copy of your receipt at
the following address: Software Media Fulfillment Department, Attn.:
C# COM+ Programming, Hungry Minds, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to
six weeks for delivery. This Limited Warranty is void if failure of the
Software Media has resulted from accident, abuse, or misapplication.
Any replacement Software Media will be warranted for the remainder
of the original warranty period or thirty (30) days, whichever is longer.

54835-2 EULA.F 8/31/01 8:11 AM Page 289

(b) In no event shall HMI or the author be liable for any damages
whatsoever (including without limitation damages for loss of business
profits, business interruption, loss of business information, or any other
pecuniary loss) arising from the use of or inability to use the Book or
the Software, even if HMI has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation
or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software for or on behalf of the United States of America, its agencies
and/or instrumentalities (the “U.S. Government”) is subject to restrictions
as stated in paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or subparagraphs
(c) (1) and (2) of the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, and in similar clauses in the NASA FAR supple-
ment, as applicable.

8. General. This Agreement constitutes the entire understanding of the
parties and revokes and supersedes all prior agreements, oral or written,
between them and may not be modified or amended except in a writing
signed by both parties hereto that specifically refers to this Agreement.
This Agreement shall take precedence over any other documents that may
be in conflict herewith. If any one or more provisions contained in this
Agreement are held by any court or tribunal to be invalid, illegal, or
otherwise unenforceable, each and every other provision shall remain in
full force and effect.

54835-2 EULA.F 8/31/01 8:11 AM Page 290

	C# COM+ Programming
	Preface
	Acknowledgments
	Contents at a Glance
	Contents
	Part I: Interoperating with COM
	Chapter 1
	Understanding .NET Architecture
	Loading and Executing Code Inside the Common Language Runtime
	Microsoft Intermediate Language and Metadata
	Class Loader
	Just In Time Compiler
	Automatic Memory Management

	Assemblies
	The Manifest
	Versioning
	Shared Names
	Global Assembly Cache
	Locating Assemblies

	Application Domains
	Common Type System
	Summary

	Chapter 2
	Consuming COM Components from .NET
	Converting Type Libraries to .NET Namespaces
	Converting Typedefs, Enums, and Modules

	Runtime Callable Wrapper
	Preserving Object Identity
	Maintaining COM Object Lifetime
	Proxying Interfaces
	Marshalling Method Calls

	Threading Issues
	Summary

	Chapter 3
	Consuming .NET Components from COM
	Converting Assemblies to COM Type Libraries
	Registering Assemblies with COM
	COM Callable Wrapper
	Preserving Object Identity
	Maintaining Object Lifetime
	Standard COM Interfaces: IUnknown & IDispatch
	Proxying Interfaces
	Marshalling Method Calls
	Activation Lifecycle
	Design Guidelines for .NET Components

	Summary

	Part II: COM+ Core Services
	Chapter 4
	Transactions
	ACID Requirements
	Atomic
	Consistent
	Isolated
	Durable

	Understanding the COM+ Transaction Process
	Logical Transaction Lifecycle
	Physical Transaction Lifecycle

	Writing Transactional Components in C#
	ServicedComponent Class
	Attribute-based Programming
	Installing a Class into a COM+ Application
	JITA, Synchronization, and AutoComplete
	Developing the Root and Worker Objects

	Summary

	Chapter 5
	Security
	Understanding Windows Security
	Authentication
	Authorization
	Special Accounts
	Impersonation

	Authenticating over the Wire
	Understanding Authentication in IIS

	Using the COM+ Security Model
	Authentication & Authorization
	Role-based Security
	Understanding Security Scope

	Summary

	Chapter 6
	Events
	Understanding the Need for LCEs
	.NET Event Architecture
	Comparing TCE Events to COM+ LCE

	The LCE Architecture
	Understanding Subscriptions
	COM+ Attributes
	Controlling Subscriber Notification Order

	Writing LCE Components in C#
	Your First LCE Component
	Creating Subscriptions by Using Component Services Explorer
	.NET Framework EventClass Attribute
	Using Transactions with Events

	Summary

	Chapter 7
	Object Pooling
	Understanding Object Pooling
	When to Use Object Pooling
	Object Pooling Attributes
	Object Pooling and Scalability
	Object Pooling and Nondeterministic Finalization
	Requirements for Poolable Objects
	Requirements for Transactional Objects

	Object Pooling in C#
	Pooled and Nonpooled Components
	Analyzing the Client
	Analyzing the Client The code for your test application

	Summary

	Chapter 8
	Queued Components
	Making the Case for Queued Components
	Introduction to Microsoft Message Queue
	Installing MSMQ
	Understanding Queues
	MSMQ Messages
	Developing MSMQ Applications by Using C#

	Understanding Queued Components in COM+
	Client and Server Requirements
	Recorder, Listener, and Player
	Instantiating Queued Components
	Exception Handling
	Queued Component Design Considerations

	Using Other COM+ Services with Queued Components
	Role-Based Security
	Transactions
	Loosely Coupled Events

	Developing Queued Components in C#
	HelloWorld Queued Component
	Loosely Coupled Events and Queued Components
	Exception Classes

	Summary

	Part III: Advanced COM+ Computing
	Chapter 9
	Remoting
	.NET Remoting Framework
	Marshaling Defined
	Endpoint Defined
	Well-known Objects
	Marshaling by Reference Versus Marshaling by Value
	Activating a Remote Object
	Proxies
	Channels
	Remote Object Lifetime

	Introduction to SOAP
	HTTP Header
	SOAP Message

	Remoting ServicedComponents
	SingleCall Component Using SOAP and HTTP
	SingleCall Component Using Binary Formatter and TCP
	Client-Activated ServicedComponent

	Summary

	Chapter 10
	The Future of COM+ and .NET
	New Features of COM+ 1.5
	COM+ Applications as Services
	Application Partitions
	Application Process Dump
	Component Aliasing
	Configurable Isolation Levels
	Low-Memory Activation Gates
	Process Recycling
	Application Pooling

	New Features of IIS 6.0
	New Server Architecture
	Application Pools and Web Gardens
	Server Modes
	Worker-Process Management
	ASP Template Cache Tuning
	XML Support for the Metabase

	New Features of MSMQ
	Summary

	Appendix A
	What’s on the CD-ROM?
	System Requirements
	Using the CD with Microsoft Windows
	What’s on the CD
	Source code
	OfficeMart Demo Application
	Electronic version of C# COM+ Programming

	Troubleshooting

	Appendix B
	The COM+ Shared Property Manager
	Sharing Memory among Threads
	Static Modifier
	Memory Conflicts and the static Modifier

	Shared Property Manager API
	SharedPropertyGroupManager Class
	SharedPropertyGroup Class
	SharedProperty Class
	Solving the Static Problem

	Appendix C
	Introduction to C#
	Namespaces

	Flow-Control Statements
	if-else Statements
	switch Statements
	Jump Statements
	Exception Handling

	Writing Loops in C#
	Method Parameters
	Arrays
	Basic Data Types
	Structures
	Classes
	Properties
	Indexers
	Unsafe Code

	Appendix D
	Compensating Resource Managers
	Introducing the Compensating Resource Manager
	Developing Compensating Resource Managers with C#

	Index
	Hungry Minds, Inc. End-User License Agreement

